期刊文献+

一种新型DSCNN-GRU结构的减速机轴承故障诊断方法 被引量:9

A New Type of DSCNN-GRU Structure for Bearing Fault Diagnosis of Reducer
在线阅读 下载PDF
导出
摘要 结合深度学习理论,将一维卷积神经网络运用于振动信号故障诊断,相较于传统方法,提取特征简单且高效。为进一步优化一维卷积结构,弥补其在信号所有位置的寻找模式,联系周期内的故障特征,提出一种新型DSCNN-GRU网络。该模型融合了深度可分离卷积的轻量快捷,降低了一维卷积结构参数;加入门控机制,可记忆分析故障点的信号特征,联系周期内的信号关系,更好地捕捉信号故障特征,提升对时间序列的敏感性。提出一种跟踪梯度优化Adam算法,解决模型随时间窗振荡问题。通过采集的减速机滚动轴承数据研究表明,该算法平均故障识别率可达94%以上,分类效果明显,泛化能力强。 Being based on the theory of deep learning,one-dimensional Convolutional Neural Networks is applied to fault diagnosis of bearing vibration signals.Compared with traditional methods,extraction feature is simple and efficient.In order to further optimize the one-dimensional convolution structure,smooth over its search mode at all positions of the signal,and connect the fault characteristics in the period,a new DSCNN-GRU network model is proposed.The model combines the lightweight and fast of Depthwise Separable Convolution,and reduces the structural parameters of one-dimensional convolution.By adding gating mechanism,the signal characteristics of fault points can be memorized and analyzed,and the signal relationship in the period can be linked to better capture the signal fault characteristics and enhance the sensitivity of temporal series.An Adam algorithm for tracking gradient optimization is proposed to solve the problem of model with time windows oscillation.The data collected from the reducer rolling bearing shows that the average fault recognition rate of the algorithm can reach more than 94%,the classification effect is obvious,and the generalization ability is stronger.
作者 汪洋 郭利进 Wang Yang;Guo Lijin(School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《机械科学与技术》 CSCD 北大核心 2020年第2期258-266,共9页 Mechanical Science and Technology for Aerospace Engineering
基金 天津市自然科学基金青年项目(16JCQNJC03800)资助.
关键词 卷积神经网络 深度可分离卷积 门控机制 故障诊断 滚动轴承 convolutional neural networks depthwise separable convolution gate mechanism fault diagnosis rolling bearing model algorithm fault recognition
作者简介 汪洋(1993-),硕士研究生,研究方向为过程监测与故障诊断,wangyangclover@163.com;通信作者:郭利进,教授,博士,Doctor-guo@tjpu.edu.cn
  • 相关文献

参考文献5

二级参考文献75

  • 1李鸿儒,顾树生.一种递归神经网络的快速并行算法[J].自动化学报,2004,30(4):516-522. 被引量:14
  • 2李伟.复杂系统的智能故障诊断技术现状及其发展趋势[J].计算机仿真,2004,21(10):4-7. 被引量:32
  • 3陈如清.两种基于神经网络的故障诊断方法[J].中国电机工程学报,2005,25(16):112-115. 被引量:20
  • 4毕果,陈进,周福昌,何俊,李富才.调幅信号谱相关密度分析中白噪声影响的研究[J].振动与冲击,2006,25(2):75-78. 被引量:13
  • 5Wen C T, Li Y F, Duc D L, et al. An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis [ J ]. Measurement, 2012,45 (6) : 1489-1498.
  • 6Huang N E, Shen Z, Long S R, et al. The empirical model decomposition and hilbert spectrum for nonlinear and non-stationary time series analysis [ C ]// Proceedings of the Royal Society Lond, 1998, 454: 903 -995.
  • 7Peng Z K, Tse P W, Chu F L. A comparison study of improved Hilbert-huang transform and wavelet transform: application to fault diagnosis for roiling bearing[ J ]. Mechanical Systems and Signal Processing, 2005,19(5) :974-988.
  • 8Lei Y G, He Z J, Zi Y Y, et al. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs [ J ]. Mechanical Systems and Signal Processing, 2007,21 ( 5 ) : 2280-2294.
  • 9Chakraborty S, Yeh C H. A simulation comparison of normalization procedures for topsis [ C ]//International Conference on Computers and Industrial Engineering, 2009.
  • 10Perlibakas V. Distance measures for PCA-b'ased recognition [ J ]. Pattern Recognition Letters, 2004, 25 : 711-724.

共引文献301

同被引文献94

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部