摘要
序列推荐研究近年来在推荐领域中发展迅速,已有的序列推荐方法善于捕捉用户的时序行为来实现偏好预测。其中,一些先进的方法融入用户的情感信息来引导行为挖掘。然而,先进的基于情感的序列推荐模型未考虑对多类别的用户情感序列进行关联挖掘;并且,这类方法无法直观地解释时序情感对用户偏好的贡献。为了弥补上述方法的局限,本工作首次尝试以记忆体的形式存储时序情感并对其施加约束。具体地,文中提出了情感自我约束和情感相互约束两种机制,来挖掘多类别情感之间的关联并辅助用户行为完成序列推荐。进一步地,提出的记忆框架能记录用户的时序情感注意力,从而在准确预测用户时序偏好的基础上提供一定程度的直观解释。实验结果表明,所提方法的性能优于先进的序列推荐方法,并且比基于情感的序列推荐模型具有更好的可解释效果。
In recent years,the research of sequential recommendation has developed rapidly in the recommendation field,existing methods are good at capturing users’sequential behavior to achieve preference prediction.Among them,some advanced methods integrate users’sentiment information to guide behavior mining.However,the advanced sentiment-based models do not consider mining relations between multi-category user sentiment sequences.Moreover,such methods cannot intuitively explain the contribution of temporal sentiments to user preferences.To make up for the above shortcomings,this paper first attempts to store temporal sentiments in the form of memory and impose constraints on them.Specifically,this research proposes two mechanisms including sentiment self-constraint and sentiment mutual-constraint to explore the associations between multiple categories of sentiments and assist user behaviors in completing sequential recommendations.Furthermore,the proposed memory framework is able to record users’temporal sentiment attention,so that it can provide a certain degree of intuitive explanation on the basis of accurately predicting users’temporal preference.Experimental results show that our approach outperforms existing state-of-the-art sequential methods,and it has better explainable effects than the sentiment-based sequential recommendation models.
作者
郑麟
林艺璇
周东霖
朱福喜
ZHENG Lin;LIN Yixuan;ZHOU Donglin;ZHU Fuxi(College of Engineering,Shantou University,Shantou,Guangdong 515063,China;School of Computer Science,Wuhan University,Wuhan 430072,China)
出处
《计算机科学》
CSCD
北大核心
2023年第S01期606-613,共8页
Computer Science
基金
国家自然科学基金(61902231)
广东省基础与应用基础研究基金(2023A1515011240,2020A1515010531)
广东教育科学规划课题高等教育专项(2021GXJK241)。
关键词
序列推荐
时序情感
情感记忆
情感约束
可解释推荐
Sequential recommendation
Temporal sentiment
Sentiment memory
Sentiment constraint
Explainable recommendation
作者简介
通信作者:郑麟,born in 1984,Ph.D,Lecturer,master supervisor,is a member of ACM and CCF.His main research interests include explainable deep learning and recommender systems.(lzheng@stu.edu.cn)。