期刊文献+

面向选择性游览的景区路径推荐算法应用研究 被引量:1

Application of an algorithm for scenic route recommendations during selective sightseeing
在线阅读 下载PDF
导出
摘要 针对目前景区路线推荐基本都从景点的热门程度以及游客可用时间的多少选择旅游路线,很少考虑到游客的个性化需求以及游览效率的现状,提出了一种基于个性化和游览效率的面向选择性游览的景区路径推荐(STRR)算法。首先通过将景区的空间结构离散化,获取游客想要游览的景点;再基于离散粒子群(PSO)算法提出利用优先级规则改进位置更新的方法,快速得到一条满足游客个性化需求的最短路径;最后以北京化工大学东校区为例利用平面仿真进行了实例验证。实验结果表明,STRR算法能够得到一条既满足游客个性化需求且游览效率最高的路径,并在计算效率方面比其他算法具有更好的优越性。 Existing popular scenic route recommendations essentially choose a tourist route according to the popularity of the attractions and the available time of the tourists. The recommended routes rarely take either the individ- ual needs of tourists or the efficiency of the tour into account. This paper presents a selective tour for route recommendation (STRR) algorithm for selective tours based on individualization and tour efficiency. This algorithm makes the spatial structure of the scenic area discrete and generates the optimum tourist attractions. Based on the discrete particle swarm optimization (PSO) method, this algorithm proposes a method to improve location update by using the priority rules. It can quickly generate the shortest route which meets the individual needs of tourists. This paper takes the East Campus of Beijing University of Chemical Technology as an example to carry out plane simulations. The experimental results show that the STRR algorithm can generate a route that satisfies the individual needs of tourists whilst also being the most efficient. The new algorithm has been shown to be more efficient in terms of calculation than other algorithms.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期99-106,共8页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 北京市自然科学基金(4142039) 国家自然科学基金(61573051)
关键词 路径推荐 个性化 游览效率 粒子群(PSO)算法 route recommendation individualization tour efficiency particle swarm optimization (PSO)
作者简介 男,1992年生,硕士生 通讯联系人E—mail:zhuqx@mail.buct.edu.cn
  • 相关文献

参考文献7

二级参考文献103

  • 1张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 2管春,胡军.求解组合拍卖NP问题的遗传算法[J].微计算机信息,2006,22(06X):194-195. 被引量:5
  • 3敏婕.浅谈NP问题[J].软件世界,2006(23):90-91. 被引量:2
  • 4Zheng Yu, Xie Xing, Ma Wei-Ying. Mining interesting loca- tions and travel sequences from GPS trajectories//Proceed- ings of the 18th International World Wide Web Conference (WWW 2009). Madrid, Spain, 2009:791-800.
  • 5Majid A, Chen Ling, Mirza H T. et al. Mining context- aware significant travel sequences from geotagged social media//Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). Toronto, Canada, 2012:2443-2444.
  • 6Lu Xin, Wang Chang-Hu, Yang Jiang-Ming, et al. Photo2Trip: Generating travel routes from geo-tagged photos for trip planning//Proeeedings of the ACM International Conference on Multimedia. Firenze, Italy, 2010:143-152.
  • 7Kurashima T, Iwata T, Irie G, Fujimura K. Travel route recommendation using geotags in photo sharing sites// Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010). Toronto, Canada, 2010:579-588.
  • 8Yoon H, Zheng Y. Xie X, Woo W. Social itinerary recom- mendation from user-generated digital trails. Personal and Ubiquitous Computing, 2012, 16(5): 469-484.
  • 9Cao Xin, Chen Li-Si, Cong Gao, Xiao Xiao-Kui. Keyword- aware optimal route search//Proceedings of the VLDB Endowment 2012. Istanbul, Turkey, 2012: 1136-1147.
  • 10Hsieh H-P, Li Cheng-Te, Lin Shou-De. Exploiting large- scale cheek-in data to recommend time-sensitive routes//Pro- eeedings of the 14th International Conference on Ubiquitous Computing (UrbComp' 12). Beijing, China, 2012:55-62.

共引文献89

同被引文献2

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部