期刊文献+

基于模型预测控制的分散式空调两阶段优化调度 被引量:1

Two⁃stage Optimal Scheduling of Decentralized Air Conditioning Load Based on Model Predictive Control
在线阅读 下载PDF
导出
摘要 近年来,空调负荷急剧增长,如何保证电网的安全、稳定运行是当前亟须解决的重要难题。针对含分散式空调的楼宇微网,提出一种基于模型预测控制(ModelPredictiveControl,MPC)两阶段优化调度策略。日前阶段,考虑楼宇微网设备间电能的互济互补能力,以系统运行经济性、环保性以及设备损耗作为综合成本目标,兼顾自身利益的同时最大限度地消纳可再生能源。在日内阶段,基于MPC方法建立融合分散式空调的楼宇微网预测模型,并反复滚动优化,以解决可再生能源出力、负荷预测精度随时间尺度增加而下降的问题。通过算例分析得出:分散式空调两阶段优化调度方法能够有效解决预测误差较大的问题,在平滑联络线的同时使系统鲁棒性得以提升。 In recent years,the air conditioning load has increased rapidly.Meanwhile,how to ensure the safe and stable operation of the power grid is an important problem to be solved.A two⁃stage optimal scheduling strategy based on model predictive control(MPC)was proposed for building microgrid with decentralized air conditioners.In day ahead stage,considering the mutual complementary ability of electric energy between the building’s microgrid equipment,the economy,environmental protection and equipment loss of the system operation were taken as the objective function to achieve the maximum consumption of renewable energy while taking into account their own interests.In the intra day stage,a building microgrid prediction model integrating decentralized air conditioning was established based on MPC method,and the problem that the precision of renewable energy output and load prediction decreases with the increase of time scale was solved through repeated rolling optimization.Through the example analysis,it is concluded that two⁃stage optimal scheduling method of decentralized air conditioning can effectively solve the problem of large prediction error,and the robust performance of the system can be improved while smoothing the contact line.
作者 林永君 张聪聪 孟耀兵 LIN Yongjun;ZHANG Congcong;MENG Yaobing(North China Electric Power University,Baoding 071003,China)
机构地区 华北电力大学
出处 《山东电力技术》 2023年第4期1-6,12,共7页 Shandong Electric Power
基金 中央高校基本科研业务费专项资金资助项目(2019MS100)。
关键词 模型预测控制 分散式空调 优化调度 负荷建模 model predictive control decentralized air conditioning optimized scheduling load modeling
作者简介 林永君(1965),男,博士,教授,硕士生导师,主要研究方向为新能源发电技术;张聪聪(1998),女,硕士在读,主要从事微电网优化调度、新能源发电方向研究;孟耀兵(1996),男,硕士在读,主要从事微电网优化调度、新能源发电方向研究。
  • 相关文献

参考文献13

二级参考文献168

  • 1王侨侨,曾君,刘俊峰,陈剑龙,王振刚.面向微电网源–储–荷互动的分布式多目标优化算法研究[J].中国电机工程学报,2020,40(5):1421-1432. 被引量:35
  • 2陈国平,梁志峰,董昱.基于能源转型的中国特色电力市场建设的分析与思考[J].中国电机工程学报,2020,40(2):369-379. 被引量:138
  • 3杨明,韩学山,王士柏,查浩.不确定运行条件下电力系统鲁棒调度的基础研究[J].中国电机工程学报,2011,31(S1):100-107. 被引量:50
  • 4宋宏坤,唐国庆,卢毅,李扬.江苏省夏季空调负荷分析及需求侧管理措施的削峰效果测算[J].电网技术,2006,30(17):88-91. 被引量:37
  • 5Hemdan N G A., Kurrat M. Interconnection of decentralized renewable resources into distribution grids: implications and planning aspects[J]. Electric Power Systems Research, 2011, 81(7): 1410-1423.
  • 6Kevin Lo. A-critical review of China's rapidly developing renewable energy and energy efficiency policies [J]. Renewable and Sustainable Energy Reviews, 2014, 29: 508-516.
  • 7Delmas M A, Montes:Sancho M J. US state policies forrenewable energy: Context and effectiveness[J]. Energy Policy, 2011, 39(5) : 2273-2288.
  • 8Zhang Di, Shah N, Papageorgiou L G. Efficient energy consumption and operation management in a smart building with microgrid[J]. Ene Conversion and Management, 2013, 74(10): 209-222.
  • 9Rim Missaoui, Hussein Joumaa, Stephane Ploix, et al. Managing energy Smart Homes according to energy prices: analysis of a building energy management system[J]. Energy and Buildings, 2014, 71(3).. 155-167.
  • 10Chert Chert, "Wang Jianhui, Kishore S. A distributed direct load control approach for large-scale residential demand response[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2219-2228.

共引文献844

同被引文献29

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部