期刊文献+

基于LSTM-AE-OCSVM的带式输送机火灾监测隐患识别技术 被引量:9

Hidden Danger Identification Technology of Belt Conveyor Fire Monitoring Based on LSTM-AE-OCSVM
在线阅读 下载PDF
导出
摘要 针对传统带式输送机火灾隐患识别方法的漏报率和误报率高的问题,通过挖掘带式输送机火灾监测中多元时间序列(MTS)数据,提出了一种长短时记忆-自编码的一类支持向量机神经网络(LSTM-AE-OCSVM)火灾隐患识别算法。首先,改进自动编码器(AE)将隐藏层中的神经元替换为LSTM神经元;然后,提取带式输送机火灾无异常监测数据的时序特征并重构输入数据;其次,改进LSTM-AE将重构值与实际值的差值序列经OCSVM训练得到包含无隐患异常样本的超平面;最后,通过计算测试集与超平面距离函数值来划分隐患异常。仿真结果表明,实验中所提出的改进方法与传统的LSTM和OCSVM等隐患异常检测方法相比准确率更高,达到了90.1%。该方法在识别矿井带式输送机火灾隐患上具有重要的应用价值。 Aiming at the high false alarm rate and false alarm rate of traditional tape lane fire hazard identification methods,by mining the multivariate time series(MTS)data in the tape lane fire monitoring,a long and short-term memory-self-encoding type of support vector is proposed.Machine neural network(LSTM-AE-OCSVM)fire hazard identification algorithm.First,the improved autoencoder(AE)replaces the neurons in the hidden layer with LSTM neurons.Then,extracts the time series features of the tape lane fire monitoring data and reconstructs the input data;secondly,the improved LSTM-AE will reconstruct.The difference sequence between the actual value and the actual value is trained by OCSVM to obtain a hyperplane containing no hidden abnormal samples.Finally,the hidden abnormal abnormalities are classified by calculating the distance function value between the test set and the hyperplane.The simulation results show that the improved method proposed in the experiment has a higher accuracy rate than the traditional hidden anomaly detection methods such as LSTM and OCSVM,reaching 90.1%.This method has important application value in identifying hidden fire hazards in belt lanes in mines.
作者 邓军 王志强 王伟峰 张宝宝 杨博 任浩 DENG Jun;WANG Zhiqiang;WANG Weifeng;ZHANG Baobao;YANG Bo;REN Hao(School of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China;School of Computer Science and Technology,Xi'an University of Science and Technology,Xi'an 710054,China;School of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
出处 《煤炭技术》 CAS 北大核心 2023年第1期225-229,共5页 Coal Technology
基金 国家重点研发计划(2019YFE0131400) 国家自然科学基金(52074213) 陕西省重点研发计划(2021SF-472) 榆林市科技计划(CXY-2020-036)。
关键词 矿井火灾 一类支持向量机 长短时记忆神经网络 自编码器 隐患识别 mine fire OCSVM LSTM auto encoding hidden danger recognition
作者简介 邓军(1970-),四川大竹人,教授,博士生导师,博士后,从事矿井自燃火灾的机理、预测及防治技术研究,电子信箱:dengjun@xidian.edu.cn;通信作者:王志强,电子信箱:372318421@qq.com.
  • 相关文献

参考文献8

二级参考文献46

  • 1沈慎,赵春宇,陈大跃.基于LPC2114的农用种子包衣机嵌入式控制系统设计[J].工业仪表与自动化装置,2005(6):33-35. 被引量:10
  • 2潘科,关守安,石剑云.嗅觉模拟技术在火灾探测中的应用[J].中国公共安全(学术版),2007(3):72-76. 被引量:1
  • 3CHENEIERT A, BRECKON T t', (,ASZCZAK A. A non-lenlporal texture driven approach to real-time fire de- tection [ C ]//hnage Processing, 2011 18th IEEE Inter- national Conference on. [ s. 1. ] : IEEE Conference Publi- cations ,2011 : 1741-1744.
  • 4HUANG Y F, CHEN H C. Performance of energy effi- cient relay and minimum distance clustering for wirelesssensor networks [ C ]// IEEE Fifth International Confer- ence on Innovative Mobile and Internet Services in Ubiq- uitous Computing (IMIS). Seoul, South Korea: IEEE Conference Publications, 2011:408-413.
  • 5LUO H, TAO H. Data fusion with desired reliability in wireless sensor networks[ J]. IEEE Transactions on Par- allel and Distributed Systems, 2011, 22 ( 3 ) :501-513.
  • 6WANGH Q, ZHANG Y G,MENG L, et al. The re- search of fire detector based on information fusion tech- nology [ C ]//Electronic and Mechanical Engineering and Information Technology ( EMEIT ) , 2011 International Conference on. Harbin, Heilongjiang : IEEE Conference Publications, 2011 ( 7 ) : 3678-3687.
  • 7WEI G. A neural network based Intrusion detection data fusion model [ C ]// Computational Science and Optimi- zation ( CSO), 2010 Third International Joint Conference on. I-luangshan, Anhui, China: IEEE Conference Publi- cations, 2010(2) :410-414.
  • 8BEN Yacoub S, ABDELJAOUED Y, MAYORAN E. Fu- sion of face and speech data for person identity verifica- tion[J]. IEEE Trans on Neural Networks, 1999, 10 ( 5 ) : 1065-1074.
  • 9LUG. Adaptive weighted fusion algorithm for monitoring system of forest fire based on wireless sensor networks [ C]/! Computer Modeling and Simulation, 2010. ICCMS '10, Second International Conference on. Sanya, Hainan: IEEE Conference Publications, 2010(4) :414417.
  • 10GUO Q M, DAI J J, WANG J. Study on fire detection model based on fuzzy neural network [ C ]// Intelligent Systems and Application (ISA), 2010 2nd International Workshop on. WuHan: IEEE Conference Publications, 2010:1-4.

共引文献59

同被引文献150

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部