期刊文献+

基于1D-CNN的高压断路器弹簧机构工作机理仿真与故障诊断分析 被引量:2

1D Conventional Neural Network for Simulation and Fault Diagnosis Analysis of Circuit Breaker
在线阅读 下载PDF
导出
摘要 高压断路器弹簧机构在操作机构中起到电信号转变为机械信号的关键作用,对整个操动机构的正常工作有着重要的影响。本文研究弹簧操作机构的工作原理,建立动态仿真模型对弹簧机构工作过程中的线圈电流、所受阻力、运行速度以及运行位移进行分析。模拟线圈卡涩以及线圈烧毁两种故障获取线圈电流试验波形并与仿真的线圈电流对比,验证仿真模型的准确性。基于仿真线圈电流数据,采用一维卷积神经网络训练电磁铁故障诊断模型,并与2D-CNN、支持向量机算法进行对比,验证本文方法的有效性。 The electromagnet of the high-voltage circuit breaker spring mechanism plays a key role in the conversion of electrical signals into mechanical signals in the operating mechanism,which has an important influence on the normal operation of the entire operating mechanism.Firstly,this paper studies the structure and working principle of the electromagnet of the spring operating mechanism,and establishes a dynamic simulation model to analyze the coil current,the resistance,the running speed and the running displacement during the working process of the electromagnet.Secondly,the coil current test waveform is obtained by simulating the coil clamp and the coil burning two faults and comparing with the simulated coil current to verify the accuracy of the simulation model.Finally,based on the simulated coil current data,1D-CNN(One-Dimensional Convolutional Neural Network)is used to train the electromagnet fault diagnosis model,and compared with 2D-CNN and SVM(Support Vector Machine)algorithms to verify the effectiveness of the proposed method.
作者 黄艺娜 HUANG Yi-na(College Intelligent Manufacturing,Zhangzhou Institute of Technology,Zhangzhou 363000,China)
出处 《长春师范大学学报》 2023年第2期40-50,共11页 Journal of Changchun Normal University
关键词 一维卷积神经网络 弹簧机构 线圈电流 仿真模型 故障诊断 one dimensional convolutional neural network spring mechanism coil current simulation model fault diagnosis
作者简介 黄艺娜,女,讲师,硕士,从事电气工程及其自动化研究。
  • 相关文献

参考文献7

二级参考文献59

共引文献370

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部