期刊文献+

Lite-YOLOv3轻量级行人与车辆检测网络 被引量:8

Lite-YOLOv3 Lightweight Pedestrian and Vehicle Detection Network
在线阅读 下载PDF
导出
摘要 基于卷积神经网络的目标检测在智能交通领域有着重要的应用,但存在复杂网络模型计算速度慢、简单网络模型精准度低两种问题.针对此问题,本文提出了基于Lite-YOLOv3的行人与车辆检测方法,该方法基于Tiny-YOLOv3网络模型进行改进.首先,本文采用卷积代替下采样方案解决Tiny-YOLOv3网络特征提取损失问题.然后其骨干层采用改进的瓶颈块(BottleneckBlock)对前一层网络特征图进行降维、连接输入输出特征图,使得网络参数量大幅下降、防止网络退化.其预测层采用改进后的深度可分离卷积块(Depthwise Separable Convolution),分离深度卷积和点卷积可以有效降低网络运算成本,加快网络运算速度.Lite-YOLOv3相较于Tiny-YOLOv3网络的运算速度提升了27.27%,mAP提高了9.07%. Object detection based on convolutional neural networks has important applications in the field of intelligent transportation, but there are two problems: slow calculation speed of complex network models and low accuracy of simple network models.To solve this problem, this paper proposes a pedestrian and vehicle detection method based on Lite-YOLOv3,which is improved based on the Tiny-YOLOv3 network model.First of all, this paper uses convolution instead of downsampling to solve the loss problem of Tiny-YOLOv3 network feature extraction.Then its backbone layer uses an improved Bottleneck Block to reduce the dimensionality of the network feature map of the previous layer and connect the input and output feature maps, so that the amount of network parameters is greatly reduced and network degradation is prevented.Its prediction layer adopts an improved Depthwise Separable Convolution(Depthwise Separable Convolution).Separating deep convolution and point convolution can effectively reduce network operation costs and speed up network operations.Compared with the Tiny-YOLOv3 network, Lite-YOLOv3 has a 27.27% increase in computing speed, and mean average precision has increased by 9.07%.
作者 涂媛雅 汤国放 张建勋 TU Yuan-ya;TANG Guo-fang;ZHANG Jian-xun(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2023年第1期211-217,共7页 Journal of Chinese Computer Systems
基金 重庆市教育委员会科学技术重点研究项目(KJZD-K201801901)资助。
关键词 tiny-YOLOv3算法 车辆检测 行人检测 瓶颈层 深度可分离卷积 tiny-YOLOv3 algorithm vehicle detection pedestrians detection bottleneck layer depthwise separable convolution
作者简介 涂媛雅,女,1997年生,硕士研究生,CCF会员,研究方向为计算机图形学、目标检测;汤国放,男,1995年生,硕士研究生,CCF会员,研究方向为计算机图形学、目标检测;通讯作者:张建勋,男,1971年生,博士,教授,CCF会员,研究方向为计算机图形学、目标检测,E-mail:timj3ly@gmail.com。
  • 相关文献

参考文献8

二级参考文献58

  • 1Rujikietgumjom S,Collins R T. Optimized pedestrian detection for multiple and occluded people [ C ]. Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013: 3690-3697.
  • 2Ouyang WoZeng X,Wang X. Modeling mutual visibility relationship in pedestrian detection [ C ]. Computer Vision and Pattern Recognition (CVPR) ,2013 IEEI. Conference on. IEEI.,2013:3222-3229.
  • 3Ouyang W, Wang X. Single-pedestrian detection aided by multi-pe- destrian detection [ C ]. Computer Vision and Pattern Recognition (CVPR) ,2013 IEEE Conference on. IEEE,2013:3198-3205.
  • 4Yan J, Zhang X, Lei Z, et al. Robust multi-resolution pedestrian de- tection in traffic scenes [ C ]. Computer Vision and Pattern Recogni- tion (CVPR) ,2013 IEEE Conference on. IEEE,2013:3033-3040.
  • 5Wang Z,Cao X B. Rapid classification based pedestrian detection in changing scenes[ C]. Systems Man and Cybernetics (SMC),2010 IEEE International Conference on. IEEE, 2010 : 1591-1596.
  • 6Cao X,Wang Z,Yan P,et al. Transfer learning for pedestrian detec- tion [ J ]. Neurocomputing,2013,100 : 51-57.
  • 7Liang F,Tang S,Wang Y,et al. A sparse coding based tTransfer learning framework for pedestrian detection[ M ]. Advances in Mul- timedia Modeling. Springer Berlin Heidelberg,2013:272-282.
  • 8Liu Z, Duan G, Ai H, et al. Adaptation of boosted pedestrian detec- tors by feature reselection [ C]. Image Processing ( ICIP), 2012 19th IEEE International Conference on. IEEE,2012:481--484.
  • 9Wang M,Wang X. Automatic adaptation of a generic pedestrian detec- tor to a specific traffic scene[ C]. Computer Vision and Pattern Recog- nition (CVPR) ,2011 It.EE Conference on.IEEE,2011:3401-3408.
  • 10Wang M, Li W, Wang X. Transferring a generic pedestrian detector towards specific scenes[ C]. Computer Vision and Pattern Recogni- tion (CVPR) ,2012 IEEE Conference on. IEEE,2012:3274-3281.

共引文献2029

同被引文献47

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部