期刊文献+

基于YOLOv5s的行人与车辆检测算法研究

Research on improved pedestrian and vehicle detection algorithm based on YOLOv5s
在线阅读 下载PDF
导出
摘要 针对城市交通环境复杂程度高,行人和车辆的检测结果精度偏低的问题。提出了改进的YOLOv5s行人与车辆检测算法。首先,在YOLOv5s加入SK注意力机制,同时选用GSConv模块替换网络中部分卷积模块,用于有效提升检测精度,同时保持网络参数量基本不变;其次,引入ECIOU损失函数,能够加快模型收敛;最后通过选用KITTI数据集来检验改进算法的效果。最终实验结果表明,改进后的YOLOv5s算法,在保证算法参数量基本不变的同时,可将行人与车辆平均检测精度从81.2%提升到了87.3%,验证了本次研究的有效性。 Aiming at the problem of high complexity of urban traffic environment and low accuracy of pedestrian and vehicle de⁃tection results.An improved YOLOv5s pedestrian and vehicle detection algorithm is proposed.Firstly,the SK attention mechanism is added to YOLOv5s,and the GSConv module is selected to replace some convolutional modules in the network,which is used to effec⁃tively improve the detection accuracy while keeping the network parameters basically unchanged.Secondly,the ECIOU loss function is introduced,which can accelerate the model convergence.Finally,the KITTI dataset is selected to test the effect of the improved algo⁃rithm.The final experimental results show that the improved YOLOv5s algorithm can improve the average detection accuracy of pedes⁃trians and vehicles from 81.2%to 87.3%while ensuring that the number of parameters of the algorithm is basically unchanged,which verifies the effectiveness of this study.
作者 朱立忠 邵永斌 杜海洋 ZHU Lizhong;SHAO Yongbin;DU Haiyang(Shenyang Ligong University,Shenyang 110159,China)
出处 《通信与信息技术》 2024年第3期98-102,共5页 Communication & Information Technology
关键词 YOLOv5s 行人车辆检测 注意力机制 损失函数优化 YOLOv5s Pedestrian and vehicle detection Urban transportation Optimization of loss function
作者简介 朱立忠(1967-),男,硕士,教授,主要研究方向为智能控制、图像处理等;邵永斌(1998-),男,硕士研究生,主要研究方向为目标检测。杜海洋(2000-),女,硕士研究生。主要研究方向为图像处理。
  • 相关文献

参考文献9

二级参考文献80

  • 1Rujikietgumjom S,Collins R T. Optimized pedestrian detection for multiple and occluded people [ C ]. Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013: 3690-3697.
  • 2Ouyang WoZeng X,Wang X. Modeling mutual visibility relationship in pedestrian detection [ C ]. Computer Vision and Pattern Recognition (CVPR) ,2013 IEEI. Conference on. IEEI.,2013:3222-3229.
  • 3Ouyang W, Wang X. Single-pedestrian detection aided by multi-pe- destrian detection [ C ]. Computer Vision and Pattern Recognition (CVPR) ,2013 IEEE Conference on. IEEE,2013:3198-3205.
  • 4Yan J, Zhang X, Lei Z, et al. Robust multi-resolution pedestrian de- tection in traffic scenes [ C ]. Computer Vision and Pattern Recogni- tion (CVPR) ,2013 IEEE Conference on. IEEE,2013:3033-3040.
  • 5Wang Z,Cao X B. Rapid classification based pedestrian detection in changing scenes[ C]. Systems Man and Cybernetics (SMC),2010 IEEE International Conference on. IEEE, 2010 : 1591-1596.
  • 6Cao X,Wang Z,Yan P,et al. Transfer learning for pedestrian detec- tion [ J ]. Neurocomputing,2013,100 : 51-57.
  • 7Liang F,Tang S,Wang Y,et al. A sparse coding based tTransfer learning framework for pedestrian detection[ M ]. Advances in Mul- timedia Modeling. Springer Berlin Heidelberg,2013:272-282.
  • 8Liu Z, Duan G, Ai H, et al. Adaptation of boosted pedestrian detec- tors by feature reselection [ C]. Image Processing ( ICIP), 2012 19th IEEE International Conference on. IEEE,2012:481--484.
  • 9Wang M,Wang X. Automatic adaptation of a generic pedestrian detec- tor to a specific traffic scene[ C]. Computer Vision and Pattern Recog- nition (CVPR) ,2011 It.EE Conference on.IEEE,2011:3401-3408.
  • 10Wang M, Li W, Wang X. Transferring a generic pedestrian detector towards specific scenes[ C]. Computer Vision and Pattern Recogni- tion (CVPR) ,2012 IEEE Conference on. IEEE,2012:3274-3281.

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部