期刊文献+

基于RTSMFE、M-KRCDA与COA-SVM的行星齿轮箱故障诊断 被引量:5

Planetary gearbox fault diagnosis based on RTSMFE,M-KRCDA and COA-SVM
在线阅读 下载PDF
导出
摘要 针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized coplanar discriminant analysis,M-KRCDA)以及郊狼优化算法优化支持向量机(coyote optimization algorithm-support vector machine,COA-SVM)的行星齿轮箱故障诊断方法。首先利用RTSMFE计算和组合行星齿轮箱原始故障信号的特征向量,构建原始高维故障特征集;然后采用M-KRCDA的特征筛选方法,减少了特征的维数并提高特征故障识别的准确性和效率;最后将低维特征输入到COA-SVM进行故障类型的判别。行星齿轮箱故障诊断试验结果分析表明,所提方法能够准确识别行星齿轮箱的常见故障,具有一定的应用前景。 Here,aiming at the problem of extracting fault features being difficult from nonlinear and nonstationary vibration signals of planetary gear box,a new planetary gearbox fault diagnosis method based on refined time-shift multiscale fuzzy entropy(RTSMFE),Mahalanobis-kernel regularized coplanar discriminant analysis(M-KRCDA) and coyote optimization algorithm-support vector machine(COA-SVM) was proposed.Firstly,RTSMFE was used to calculate and combine eigenvectors of original fault signals of planetary gearbox,and construct original high-dimensional fault feature set.Then M-KRCDA’s feature screening method was used to reduce features’ dimension number and improve accuracy and efficiency of feature fault identification.Finally,low-dimensional features were input into COA-SVM to distinguish fault types.The experimental results of planetary gearbox fault diagnosis showed that the proposed method can accurately identify common faults of planetary gearbox,and have a certain application prospect.
作者 戚晓利 崔创创 杨艳 程主梓 陈旭 QI Xiaoli;CUI Chuangchuang;YANG Yan;CHENG Zhuzi;CHEN Xu(School of Mechanical Engineering,Anhui University of Technology,Maanshan 243032,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第21期109-120,共12页 Journal of Vibration and Shock
基金 安徽省自然科学基金(1808085ME152)。
关键词 故障诊断 行星齿轮箱 精细时移多尺度模糊熵(RTSMFE) 马氏距离的核正则化共面判别分析(M-KRCDA) 郊狼优化算法优化支持向量机(COA-SVM) fault diagnosis planetary gearbox refined time-shift multiscale fuzzy entropy(RTSMFE) Mahalanobis-kernel regularized coplanar discriminant analysis(M-KRCDA) coyote optimization algorithm-support vector machine(COA-SVM)
作者简介 第一作者:戚晓利,男,博士,副教授,1975年生;通信作者:崔创创,男,硕士生,1997年生。
  • 相关文献

参考文献13

二级参考文献199

共引文献635

同被引文献66

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部