期刊文献+

基于自相关的CEEMDAN-TFPF降噪方法在齿轮故障诊断中的应用研究 被引量:1

Application of Autocorrelation-based CEEMDAN-TFPF Denoise Method in Gear Fault Diagnosis Research
原文传递
导出
摘要 针对齿轮箱故障诊断过程中,不可避免的存在噪声的问题,在自适应噪声完备集合经验模态分解CEEMDAN降噪方法的基础上,结合时频峰值滤波TFPF降噪方法,提出了CEEMDAN-TFPF联合降噪方法。首先对信号进行CEEMDAN分解得到模态分量,采用自相关和方差分析判断模态分量含噪程度,利用TFPF对含噪较多的分量进行降噪处理,将处理后的分量信号累加重构得到联合降噪方法的结果。通过仿真验证了该方法的可行性,利用实验验证了其可靠性,实验结果表明,所提出的方法能够对噪声进行有效抑制,且有效信号成分幅值不被削弱,降噪后信号信噪比提高,均方根误差减小,且能够有效地表现出故障的特征。 Addressing the inevitable noise in the process of gearbox fault diagnosis,we propose a CEEMDAN-TFPF joint noise reduction method that combines the traditional EMD noise reduction method and time-frequency peak filtering(TFPF).In this method,the signal undergoes decomposition via CEEMDAN to extract modal components.Autocorrelation and variance analysis determine the noise level of modal components,enabling the noise reduction process.The signal is then accumulated and reconstructed to achieve the joint noise reduction method result.The feasibility of the method is verified through simulation and its reliability through experiments.The results indicate that the method can effectively suppress the noise without weakening the amplitude of the effective signal component.Post noise reduction,the signal-to-noise ratio improves and the mean square root error decreases,effectively representing the fault characteristics.
作者 李民辉 李俊 刘雨 LI Minhui;LI Jun;LIU Yu(School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《数字制造科学》 2023年第3期199-204,共6页
关键词 经验模态分解 时频峰值滤波 信号降噪 故障诊断 empirical mode decomposition time-frequency peak filtering signal denoising fault diagnosis
作者简介 李民辉(1998-),男,江西赣州人,武汉理工大学机电工程学院硕士研究生.
  • 相关文献

参考文献5

二级参考文献50

  • 1WU Chunyan,LIU Jian,PENG Fuqiang,YU Dejie,LI Rong.Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition[J].Chinese Journal of Mechanical Engineering,2013,26(4):831-838. 被引量:16
  • 2于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:151
  • 4DELUCA C. Physiology and mathematics of myoelectirc signals[J]. IEEE Trans. on Biomedicine Engineering, 1979, 26(3): 313-325.
  • 5ZHANG F, LI P F, HOU Z G, et al. sEMG based continuous estimation of joint angles of human legs by using BP neural network[J]. Neurocomputing, 2012, 78(1): 139-148.
  • 6LOVELL G A, BLANCH P D, BARNES C J. EMG of the hip adductor muscles in six clinical examination tests [J]. Physical Therapy in Sport, 2012, 13(3): 134-140.
  • 7PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Fractal analysis features for weak and single-channel upper-limb EMG signals [J]. Expert Systems with Applications, 2012(12): 11156-11163.
  • 8HUANG B, KUNOTH A. An optimization based empirical mode decomposition scheme[J]. Journal of Computational and Applied Mathematics, 2013, 240: 174-183.
  • 9XU G, WANG X, XU X, et al. Improved EMD for the analysis of FM signals [J]. Mechanical systems and Signal Processing. 2012, 33: 181-196.
  • 10CHENG J, YU D, YANG Y, et al. Research on the intrinsic mode function(IMF) criterion in EMD method [J] Mechanical Systems and Signal Processing, 2006, 20(4): 817-824.

共引文献239

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部