期刊文献+

针对时间序列的城轨牵引能耗异常分析 被引量:2

Outlier analysis of urban rail traction energy consumption based on time series
在线阅读 下载PDF
导出
摘要 城市轨道交通牵引能耗占系统整体能耗的40%~60%.车载能耗计量装置记录了大量时间序列形式的牵引能耗数据,其能耗模式和异常分析对城市轨道交通节能运营具有重要意义.本文提出一种针对时间序列数据的牵引能耗异常分析方法.首先基于符号化近似聚合方法降低原时间序列维度得到牵引能耗子模式,然后利用K-means聚类实现牵引能耗模式判别,最后基于获得的典型牵引能耗模式及时间序列相似性度量方法,分析牵引能耗时间序列是否存在异常.将该方法应用于北京地铁某线路列车运营过程中记录的数据,得到3种典型能耗模式并结合车底运用计划进行分析,所提方法可用于时间序列牵引能耗数据的异常判断,为及时发现并确定牵引能耗异常程度提供数据支撑. In the urban rail transit system, the traction energy consumption accounts for 40%-60% of the total system energy consumption. A large amount of traction energy consumption data is recorded by the on-board energy consumption recorder in the form of time series, whose energy consumption pattern and outlier analysis are of great significance to the energy-saving operation of urban rail transit. This paper proposes a method for outlier analysis of traction energy consumption based on time series data. First, the traction energy consumption sub-patterns are obtained by the symbolic aggregate approximation after reducing the dimension of the original time series. Then, the traction energy consumption patterns are recognized by K-means clustering. Finally, whether the time series of traction energy consumption is abnormal is analyzed based on the typical traction energy consumption pattern and the time series similarity measure. The proposed method is applied to the data recorded on a Beijing Subway during its operation, obtaining three typical energy consumption patterns. And these patterns are analyzed according to the rolling stock scheduling plan. The proposed method can be used to judge the anomalies of traction energy consumption data in time series, providing data support for timely finding and analyzing the anomalies of traction energy consumption.
作者 李熙 张立成 LI Xi;ZHANG Licheng(Beijing Mass Transit Railway Operation Corporation LTD.,Beijing 100044,China;School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《北京交通大学学报》 CAS CSCD 北大核心 2021年第5期30-36,共7页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 广西科技计划项目(桂科AD20297125) 英国皇家工程院牛顿基金项目(TSPC1025) 北京市交通行业科技项目(201820-JNBJ3)。
关键词 城市轨道交通 牵引能耗 异常分析 时间序列数据 符号化近似聚合 相似性 urban rail transit traction energy consumption outlier analysis time series data symbolic aggregate approximation similarity
作者简介 第一作者:李熙(1981—),男,吉林舒兰人,正高级工程师,博士.研究方向城市轨道交通车辆设计、运用与维护.email:bjtulx@163.com.
  • 相关文献

参考文献5

二级参考文献36

  • 1李志亮,陈新强,马金平,夏林锋.空调长效节能特性评价方法的研究[J].制冷技术,2013,33(2):27-29. 被引量:9
  • 2王智锐,唐汝宁.基于支持向量机算法的空调负荷预测及实验研究[J].制冷技术,2013,33(4):28-31. 被引量:23
  • 3覃栋,王云艳.能耗信息管理系统在电力机车的应用[J].微计算机信息,2006(06S):187-189. 被引量:5
  • 4刘宝林.地铁列车能耗分析[J].电力机车与城轨车辆,2007,30(4):65-68. 被引量:46
  • 5YU F W, CHAN K T. Using cluster and multivariate analyses to appraise the operating performance of a chiller system serving an institutional building[J]. Energy and Buildings, 2010, 44(1): 104-113.
  • 6XU X, FU X, WANG S. Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods[J]. Applied Thermal Engineering, 2008, 28(2-3): 226-237.
  • 7闵晓丹.付兆祥.公共建筑空调系统运行能效比分析和优化[D].重庆:重庆大学,2007.
  • 8MAIMON O, ROKACH L. Data mining and knowledge discovery handbook[M]. 2nd ed. New York: Springer, 2010.
  • 9AHMED A, KORRES N E, PLOENNIGS J, et al. Mining building performance data for energy-efficient operation[J]. Advanced Engineering Informatics, 2011, 25(2): 341-354.
  • 10YU Z, HAGHIGHAT F, FUNG C M, et al. A decision tree method for building energy demand modeling[J]. Energy and Buildings, 2010, 42(10): 1637-1646.

共引文献16

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部