期刊文献+

基于PSO-BP算法的铜管生产过程能耗异常检测模型 被引量:4

Copper Tube Production Process Energy Consumption of Anomaly Detection Model Based on PSO-BP Algorithm
在线阅读 下载PDF
导出
摘要 传统能耗异常检测方法大多使用固定阈值比较法、缺乏自适应能力等问题。为提高企业能耗异常检测精度,将使用基于PSO-BP神经网络的预测方法获取分工序各批次正常情况的预测能耗,根据误差的概率分布动态设置能耗的置信区间,并依据实际能耗值是否落在预测能耗置信区间范围内来判定是否出现能耗异常检测现象,从而构建了铜管能耗异常检测模型。通过对比使用不同方法构建的异常检测模型的漏检率和误检率,证明此模型能很好地减少漏检、抑制误检。 The traditional energy consumption most anomaly detection method using a fixed threshold comparison method,lack of adaptive ability problems.In order to improve the enterprise energy consumption of anomaly detection accuracy,this paper will use the PSO- BP neural network based prediction method for the division of sequence forecast energy consumption of each batch normal,according to the error probability distribution dynamic set the confidence interval of energy consumption,and on the basis of the actual energy consumption value is fall within the scope of the forecasting confidence interval of energy consumption to determine whether any anomaly detection of energy consumption phenomenon,so as to build the energy consumption of copper anomaly detection model.By comparing with different methods to build the anomaly detection model of miss rate and false detection rate,it is concluded that this model can reduce leak and inhibit mistakenly identified.
作者 代德宇 何江涛 吴中元 DAI De-yu HE Jiang-tao WU Zhong-yuan(College of Mechanical and Electronic Engineering , Guangdong University of Technology , Guangzhou 510006, China)
出处 《机电工程技术》 2016年第9期128-132,共5页 Mechanical & Electrical Engineering Technology
关键词 异常检测 优化BP网络 铜管 模型 anomaly detection optimize BP network well Copper pipe model
作者简介 代德宇,男,1990年生,湖北仙桃人,硕士研究生。研究领域:智能制造、低碳制造。
  • 相关文献

参考文献1

二级参考文献4

  • 1Kennedy J , Eberhart R C. Particle swarm optimization Proc. [C]. IEEE International Conference on Neural Networks, IV. Piscataway, IEEE Service Center,1995. 1942-1948.
  • 2Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [C]. Proc. 1999 Congress on Evolutionary Computation, Washington, DC. 1951-1957.
  • 3Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. In Proceedings of the Congress on Evolutionary Computing,San Diego,USA, 2000.IEEE Service Center. Piscataway. 84-89.
  • 4Mendes R, Kennedy J, Jos Neves. The fully informed particle swarm:simpler,maybe better[J]. IEEE Trans on Evolutionary Computation, 2004.8(3):204-210.

共引文献19

同被引文献26

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部