期刊文献+

基于用户细粒度属性偏好聚类的推荐策略 被引量:8

Recommendation Strategy Based on Users’Preferences for Fine-Grained Attributes
原文传递
导出
摘要 【目的】针对推荐系统研究中主要依赖用户对项目的评分信息所带来的稀疏性问题,提出一种基于细粒度属性偏好聚类的新型推荐模型。【方法】首先对项目-属性关系和用户-属性偏好进行建模,然后采用聚类方法分别从用户和项目两个角度构建相似簇,最后基于用户簇或项目簇采用协同过滤算法生成推荐列表。【结果】基于豆瓣数据集的实验结果表明,所提模型在准确率和召回率上均表现最优,均值较次优方法分别提升了19.7%和44.6%,验证了用户属性建模和聚类策略的有效性。【局限】在多维细粒度属性信息的表征和建模上需要进一步探究。【结论】基于用户细粒度属性偏好建模能更深层次地表征用户兴趣,从而实现推荐效果的提升。 [Objective]This study proposes an improved recommendation model based on the users’preferences for fine-grained attributes,aiming to address the data sparsity issues of the exisiting algorithms.[Methods]First,we constructed models for the project-attribute relationship and user-attribute preference.Then,we built simliar clusters for users and projects respectively.Finally,we used the collaborative filtering algorithm to generate recommendation lists based on user or project clusters.[Results]We examined the new method with dataset from Douban.com.Compared with the suboptimal models,the proposed approach significantly improved the Precision and Recall of the recommendation tasks(upto 19.7%and 44.6%respectively).[Limitations]More research is needed to further improve the representation and modeling of multi-dimensional fine-grained attributes.[Conclusions]The proposed model could effectively represent users’interests and improve the performance of recommendation.
作者 杨辰 陈晓虹 王楚涵 刘婷婷 Yang Chen;Chen Xiaohong;Wang Chuhan;Liu Tingting(College of Management,Shenzhen University,Shenzhen 518060,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2021年第10期94-102,共9页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目(项目编号:71701134) 广东省基础与应用基础研究基金项目(项目编号:2019A1515011392) 深圳市哲学社会科学规划课题项目(项目编号:SZ2020D015)的研究成果之一。
关键词 推荐算法 协同过滤 项目属性偏好 聚类 Recommendation Algorithms Collaborative Filtering Item Attribute Preference Clustering
作者简介 通讯作者:刘婷婷,ORCID:0000-0002-1681-7272,E-mail:liutingting2017@email.szu.edu.cn。
  • 相关文献

参考文献7

二级参考文献48

  • 1HANJW KAMBEM 范明 孟晓峰 译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.237-251.
  • 2Balabanovic M,Shoham Y.Fab:content-based collaborative recommendation[J].Communications of the Association for Computing Machinery,1997,40(3):66-72.
  • 3Resnick P,Iacovou N,Suchak M,et al.GroupLens:an open architecture for collaborative filtering of Netnews[C]//Proc.of ACM 1994 Conference on Computer Supporied Cooperative Work.Chapel Hill:ACM Press,1994:175-186.
  • 4Marlin B.Modeling user rating profiles for collaborative filtering[C]//Advances in Neural Information Processing Systems 16 (NIPS16).Cambridge,MA:MIT Press,2003:627-634.
  • 5Yu K,Schwaighofer A,Tresp V,et al.Probabilistic memory based collaborative filtering[J].IEEE Transaction on Knowledge and Data Engineering,2004,16(1):56-69.
  • 6Hofmann T.Latent semantic models for collaborative filtering[J].ACM Trans.Information Systems,2004,22:89-115.
  • 7Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithm[C]// Proc.of the 10th In ternational World Wide Web Conference.New York t ACM Ptess,2001:285-295.
  • 8Leung C W,Chan S C,Chung F.A collaborative filtering framework based on fuzzy association rules and multiple-level similarity[J].Knowledge Information Systems.2006,9(4):492-511.
  • 9Lin W Y,Alvarez S A,Ruiz C.Efficient adaptive-support asso ciation rule mining for recommender systems[J].Data Mining and Knowledge Discovery.2002,6(2):83-105.
  • 10Si L,Jin R.Flexible mixture model for collaborative filtering[C]//Proc.of the 20th International Conference on Machine Learning.Washington,DC:AAAI Press,2003:704-711.

共引文献116

同被引文献90

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部