期刊文献+

基于深度学习的情感分析系统设计

Design of Sentiment Analysis System Based on Deep Learning
在线阅读 下载PDF
导出
摘要 线上教育具有非接触式特点,成为影响在线教学成效的主要因素。通过检测和分析学生的学习行为和情感,能够增强教学的针对性,是改善在线学习效果的重要方法。本文提出一种基于深度学习文本分析的情感分析系统,通过分析学生对课程学习等的评论内容,预测学生学习的情感状况,能够为优化在线教学方法提供一种思路。 Online education has the characteristics of non-contact, which has become the main factor affecting the effectiveness of online teaching. Detecting and analyzing students’ learning behavior and emotion can enhance the pertinence of teaching, which is an important method to improve the effect of online learning. This paper proposes an emotion analysis system based on in-depth learning text analysis. By analyzing students’ comments on course learning, this system can predict students’ learning emotion, which can provide an idea for optimizing online teaching methods.
作者 王浩 WANG Hao(School of Information Engineering,Xizang Minzu University,Xianyang Shaanxi 712082,China)
出处 《信息与电脑》 2021年第19期80-82,共3页 Information & Computer
基金 西藏高校教师专业实践实战能力提高计划项目“智慧教育关键技术学习实践项目” 西藏自治区教育科学研究课题“新时代高校教育信息化发展模型及其评价体系研究”(项目编号:XZJKY19205)。
关键词 情感分析 情感分类 深度学习 emotion analysis sentiment classification deep learning
作者简介 王浩(1975-),男,陕西西安人,硕士研究生,副教授。研究方向:信息化教育。
  • 相关文献

参考文献14

二级参考文献88

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:328
  • 2唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:138
  • 3B.Pang,L.Lee.Seeing stars:Exploiting class relationships for sentiment categorization with respect to rating scales[C]Proceedings of the ACL,2005:115-124.
  • 4Y.Bengio,R.Ducharme,P.Vincent,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3:1137-1155.
  • 5Collobert R,Weston J.A unified architecture for natural language processing:Deep neural networks with multitask learning[C]//Proceedings of the 25th international conference on Machine learning.ACM,2008:160-167.
  • 6Mnih A,Hinton G E.A Scalable Hierarchical Distributed Language Model[C]//Proceedings of NIPS.2008::1081-1088.
  • 7Mikolov T,Karafiát M,Burget L,et al.Recurrent neural network based language model[C]//Proceedingsof INTERSPEECH.2010:1045-1048.
  • 8Mikolov T,Kombrink S,Burget L,et al.Extensions of recurrent neural network language model[C]//Proceedings of Acoustics,Speech and Signal Processing(ICASSP),2011 IEEE International Conference on.IEEE,2011:5528-5531.
  • 9Kombrink S,Mikolov T,Karafiát M,et al.Recurrent Neural Network Based Language Modeling in Meeting Recognition[C]//Proceedings of INTERSPEECH.2011:2877-2880.
  • 10Mikolov T,Chen K,Corrado G,et al.Efficient estimation of word representations in vector space[J].arXiv preprint arXiv:1301.3781,2013.

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部