期刊文献+

基于卷积神经网络的微博情感倾向性分析 被引量:98

Convolutional Neural Networks for Chinese Micro-blog Sentiment Analysis
在线阅读 下载PDF
导出
摘要 微博情感倾向性分析旨在发现用户对热点事件的观点态度。由于微博噪声大、新词多、缩写频繁、有自己的固定搭配、上下文信息有限等原因,微博情感倾向性分析是一项有挑战性的工作。该文主要探讨利用卷积神经网络进行微博情感倾向性分析的可行性,分别将字级别词向量和词级别词向量作为原始特征,采用卷积神经网络来发现任务中的特征,在COAE2014任务4的语料上进行了实验。实验结果表明,利用字级别词向量及词级别词向量的卷积神经网络分别取得了95.42%的准确率和94.65%的准确率。由此可见对于中文微博语料而言,利用卷积神经网络进行微博情感倾向性分析是有效的,且使用字级别的词向量作为原始特征会好于使用词级别的词向量作为原始特征。 Chinese micro-blog sentiment analysis aims to discover the user attitude towards hot events. This task is challenged by immense noises, rich new words, numerous abbreviations, vigorous collocation, together with the limited contextual information provided in the short texts. This paper explores the feasibility of performing Chinese micro-blog sentiment analysis by convolutional neural networks. To avoid task-specific features, character level cmbedding and word level embedding are adopted for convolutional neural networks(CNN). On the COAE 4th task corpus, the character level CNN achieves a sentiment prediction (in both binary positive/negative classification) accuracy of 95.42 %, slightly better than the word level CNN yielding 94. 65 % accuracy. The results show that the convolutional neural networks model is promising in Chinese micro-blog sentiment analysis.
出处 《中文信息学报》 CSCD 北大核心 2015年第6期159-165,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61277370 61402075) 国家863高科技计划资助项目(2006AA01Z151) 辽宁省自然科学基金(201202031 2014020003) 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金(20090041110002) 中央高校基本科研业务费专项资金资助
关键词 深度学习 情感倾向性分析 卷积神经网络 词向量 deep learning sentiment analysis convolutional neural networks word embeddilig
作者简介 刘龙飞(1989-),硕士研究生,主要研究领域为机器学习、情感计算。E—mail:liudragonfly@mail.dlut.edu.cn 杨亮(1986-),博士研究生,主要研究领域为情感分析、自然语言理解。E—mail:yangliang@mail.dlut.edu.cn 张绍武(1967-),博士,副教授,主要研究领域为情感计算和搜索引擎。E—mail:zhangsw@dlut.edu.cn
  • 相关文献

参考文献19

  • 1Pang B, Lee L. Seeing stars: Exploiting class relation- ships for sentiment categorization with respect to rating scales[C]//Proceedings o~ the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 115-124.
  • 2梁军,柴玉梅,原慧斌,昝红英,刘铭.基于深度学习的微博情感分析[J].中文信息学报,2014,28(5):155-161. 被引量:110
  • 3罗毅,李利,谭松波,程学旗.基于中文微博语料的情感倾向性分析[J].山东大学学报(理学版),2014,49(11):1-7. 被引量:11
  • 4LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [C]//Pro- ceedings of the IEEE, 1998, 86(11) : 2278-2324.
  • 5Yih W, He X, Meek C. Semantic parsing for single-rela- tion question answering[C]//Proceedings of ACL 2014.
  • 6Shen Y, He X, Gao J, et al. Learning semantic repre- sentations using convolutional neural networks for web search[C]//Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Confer- ences Steering Committee, 2014: 373-374.
  • 7Blunsom P, Grefenstette E, Kalehbrenner N. A conv- olutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Associ- ation for Computational Linguistics. 2014.
  • 8Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].The Journal of Ma- chine Learning Research, 2011, 12: 2493-2537.
  • 9dos Santos C N, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts[C]// Proceedings of the 25th International Conference on Computational Linguistics (COLING). Dublin, Ire-land. 2014.
  • 10Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the EMNLP,2014.

二级参考文献25

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2王根,赵军.基于多重标记CRF句子情感分析的研究[C]//全国第九届计算机语言学学术会议论文集.大连:[出版者不详],2007.
  • 3唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:137
  • 4B.Pang,L.Lee.Seeing stars:Exploiting class relationships for sentiment categorization with respect to rating scales[C]Proceedings of the ACL,2005:115-124.
  • 5Y.Bengio,R.Ducharme,P.Vincent,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3:1137-1155.
  • 6Collobert R,Weston J.A unified architecture for natural language processing:Deep neural networks with multitask learning[C]//Proceedings of the 25th international conference on Machine learning.ACM,2008:160-167.
  • 7Mnih A,Hinton G E.A Scalable Hierarchical Distributed Language Model[C]//Proceedings of NIPS.2008::1081-1088.
  • 8Mikolov T,Karafiát M,Burget L,et al.Recurrent neural network based language model[C]//Proceedingsof INTERSPEECH.2010:1045-1048.
  • 9Mikolov T,Kombrink S,Burget L,et al.Extensions of recurrent neural network language model[C]//Proceedings of Acoustics,Speech and Signal Processing(ICASSP),2011 IEEE International Conference on.IEEE,2011:5528-5531.
  • 10Kombrink S,Mikolov T,Karafiát M,et al.Recurrent Neural Network Based Language Modeling in Meeting Recognition[C]//Proceedings of INTERSPEECH.2011:2877-2880.

共引文献113

同被引文献564

引证文献98

二级引证文献1062

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部