期刊文献+

煤矿井下局部通风机需风量的预测 被引量:10

Prediction of air demand of local ventilator in underground coal mine
在线阅读 下载PDF
导出
摘要 为了解决局部通风机根据下一刻风量需求提前进行风速调整的问题,提出一种改进遗传算法优化的Elman神经网络算法IGA-Elman(Improved genetic algorithm-Elman)对需风量进行预测。改进的算法是对遗传算法的选择算子策略进行改进,通过复制优良个体及按比例选取较优的方法,使得种群平均适应度得到改善,提高了算子的选优能力。利用IGA-Elman神经网络和传统的GA-Elman神经网络对局部通风机需风量的预测相比较,IGA-Elman网络能够提高预测性,并且具有收敛速度快的优点,实现了局部通风机需风量的准确预测,对煤矿安全生产具有重要的实际意义。 In order to solve the problem of wind speed adjustment in advance according to the demand of air volume at the next moment, an improved genetic algorithm to optimize Elman neural network algorithm of IGA-Elman(Improved based algorithm-Elman) is proposed to predict the required air volume. The improved algorithm changes the strategy to improve the selection operator of genetic algorithm, by copying excellent individuals and selecting better methods according to proportion, the average fitness of population is improved and the ability of operator selection is improved. Compared with the IGA-Elman neural network and the traditional GA-Elman neural network, the IGA-Elman network can improve the predictability and the convergence is quick, and air demand of the local ventilator can be accurately predicted.
作者 闫向彤 杨琦 YAN Xiang-tong;YANG Qi(School of Mechanical Engineering,Xi'an Science and Technology,Xi'an 710054,China)
出处 《煤炭工程》 北大核心 2021年第10期148-152,共5页 Coal Engineering
基金 国家自然科学基金(51874235)。
关键词 遗传算法 ELMAN神经网络 局部通风机 需风量预测 genetic algorithm Elman neural network local ventilator air demand forecast
作者简介 闫向彤(1974-),女,辽宁沈阳人,副教授,工学博士,研究方向为数字化设计与制造,E-mail:yxt@xust.edu.cn。
  • 相关文献

参考文献17

二级参考文献169

共引文献483

同被引文献92

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部