期刊文献+

电力市场环境下基于深度强化学习的微网能量管理系统实时自动控制算法 被引量:16

Real-time automatic control algorithm of micro-grid energy management system based on deep reinforcement learning in electricity market environment
在线阅读 下载PDF
导出
摘要 作为多类分布式能源的集成者,微网在促进清洁低碳能源发展方面有巨大潜力。然而,可再生能源出力的不确定性给微网的管理带来了挑战,同时也将这种不确定因素带给外部电网。文章基于实时市场,构建了一个包含新能源机组、传统机组和需求响应资源的微网环境,并采用了能够利用环境信息的深度确定性策略梯度算法,这种无模型(Model-free)的强化学习算法有助于充分利用累积的数据信息,能够更好地适应不确定环境,在连续的状态空间和动作空间中进行学习提升。仿真结果表明,所提算法能够有效应对微网中的不确定因素,降低微网运行成本。 As an integrator of distributed energy,micro-grid has great potential in promoting the development of clean and low-carbon energy.However,the uncertainty of renewable energy output brings challenges to the management of micro-grid,and also brings this uncertainty to the external grid.Based on the real-time market,this paper constructs a micro-grid environment including new energy units,traditional units and demand response resources,and adopts a deep deterministic strategy gradient algorithm which can utilize the environmental information.This model-free reinforcement learning algorithm helps to make full use of the accumulated data information,which can better adapt to the uncertain environment and improve in the continuous state space and action space.Simulation results show that the proposed algorithm can reduce the operating cost of micro-grid while dealing with the uncertain factors effectively.
作者 郭国栋 龚雁峰 Guo Guodong;Gong Yanfeng(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University),Beijing 102206,China)
出处 《电测与仪表》 北大核心 2021年第9期78-88,共11页 Electrical Measurement & Instrumentation
基金 国家电网公司科技资助项目(SGTYHT/15-JS-191)。
关键词 微网 深度强化学习 电力市场 可再生能源 micro-grid deep reinforcement learning electricity market renewable energy
作者简介 郭国栋(1995-),男,博士研究生,研究方向为人工智能在电力系统中的应用。Email:gbjdsf@163.com;龚雁峰(1977-),男,教授,博士生导师,研究方向为电力系统保护与控制、电力系统稳定分析、先进测控与计算机技术在电力系统应用等。Email:yanfeng.gong@ncepu.edu.cn。
  • 相关文献

参考文献14

二级参考文献208

  • 1艾欣,刘晓.基于可信性理论的含风电场电力系统动态经济调度[J].中国电机工程学报,2011,31(S1):12-18. 被引量:56
  • 2陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48. 被引量:124
  • 3胡江溢,王鹤,周昭茂.电力需求侧管理的国际经验及对我国的启示[J].电网技术,2007,31(18):10-14. 被引量:56
  • 4程林,孙元章,贾宇,吴琛,李文云.发电机励磁控制中负荷补偿对系统稳定性的影响[J].中国电机工程学报,2007,27(25):32-37. 被引量:23
  • 5Jonas Eickmann,Tim Drees,Jens D. Sprey,Albert Moser.Optimizing Storages for Transmission System Operation[J].Energy Procedia.2014
  • 6Christian Bussar,Melchior Moos,Ricardo Alvarez,Philipp Wolf,Tjark Thien,Hengsi Chen,Zhuang Cai,Matthias Leuthold,Dirk Uwe Sauer,Albert Moser.Optimal Allocation and Capacity of Energy Storage Systems in a Future European Power System with 100% Renewable Energy Generation[J].Energy Procedia.2014
  • 7H. Siahkali,M. Vakilian.Stochastic unit commitment of wind farms integrated in power system[J].Electric Power Systems Research.2010(9)
  • 8Bouffard F,Galiana F. D.Stochastic Security for Operations Planning with Significant Wind Power Generation[].IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the st Century.2008
  • 9Hodge B,Milligan M.Wind power forecasting errordistributions over multiple timescales[].IEEEPower and Energy Society General Meeting.2011
  • 10Hetzer, John,Yu, David C.,Bhattarai, Kalu.An economic dispatch model incorporating wind power[].IEEE Transactions on Energy Conversion.2008

共引文献453

同被引文献220

引证文献16

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部