期刊文献+

基于深度学习的AS-OCT图像分析系统构建及其在角膜病变辅助诊断中的应用 被引量:1

Deep learning based lesion detection from anterior segment optical coherence tomography images and its application in the diagnosis of keratoconus
原文传递
导出
摘要 目的:基于深度学习方法开发眼前节相干光层析成像术(AS-OCT)图像分析系统,并评价其对常见角膜病变及特征的自动识别与定位效果。方法:收集2011年1月至2019年8月于青岛眼科医院就诊的患者4026例(5617只眼),男性1977例,女性2049例,年龄(45±23)岁,将其AS-OCT图像作为训练集,由临床医师人工标注角膜上皮缺损、角膜上皮增厚、角膜变薄等16种特征的类型和位置,以及角膜上皮层和基质层的组织分层,用于训练基于深度卷积神经网络算法构建的AS-OCT图像特征识别模型和角膜分层模型。再收集1709幅患眼AS-OCT图像作为验证集,由模型对特征和角膜分层情况进行识别,并与人工标注结果相比,通过准确度、灵敏度和特异度来评价角膜特征检测模型,采用模型标注区域与人工标注区域的重合率(Dice系数)来评价角膜分层模型。结果:5617幅训练集人工对角膜特征的标注结果(训练数量)为角膜上皮缺损1472例、角膜上皮增厚2416例、角膜变薄2001例、角膜前凸780例、角膜增厚2064例、上皮下水泡358例、上皮下混浊486例、角膜溃疡1010例、基质混浊3635例、后弹力层褶皱1060例、后弹力层脱离137例、角膜后沉积物665例、角膜穿孔176例、角膜异物127例、LKP术后299例、PKP术后234例。验证集中1709幅图像中1596幅被人工标注特征,角膜特征检测模型对16种特征的检测结果与人工标注结果相比,平均灵敏度为96.5%,平均特异度为96.1%;15幅图像存在特征漏检,漏检率为0.93%。角膜分层模型对于角膜上皮层和基质层分割的平均Dice系数分别为0.985及0.917。结论:该系统可为医师提供AS-OCT图像中角膜特征的类型和位置信息,准确率较高,可以帮助眼科医师提升诊断效率及准确性。 Objective To developed an image analysis system of anterior segment optical coherence tomography(AS-OCT)examination results based on deep learning technology,and to evaluate its effect in identifying various types of corneal pathologies and quantified indices.Methods A total of 4026 patients(5617 eyes),including 1977 males and 2049 females,aged(45±23)years,were enrolled in Qingdao Eye Hospital from January 2011 to August 2019.The AS-OCT images were used as a training dataset,which were labeled with location information of 16 corneal pathologies(including corneal epithelial defect,corneal epithelial thickening,corneal thinning and so on)by clinical experts,as well as the tissue stratification of the corneal epithelium and stroma.The labeled AS-OCT images were used to train the corneal pathology detection model and corneal stratification model based on deep convolutional neural network algorithm.Then 1709 AS-OCT images of the affected eyes were collected as a validation dataset.Compared with the artificial labeling results,the accuracy,sensitivity and specificity were evaluated in the corneal pathology detection model,and the overlapping rate(Dice coefficient)between the labeled area of the model and the artificial labeling area was used to evaluate the corneal stratification model.Results The results of 5617 training sets showed that there were 1472 cases of corneal epithelial defect,2416 cases of corneal epithelial thickening,2001 cases of corneal thinning,780 cases of corneal lordosis,2064 cases of corneal thickening,358 cases of subepithelial blisters,486 cases of subepithelial opacity,1010 cases of corneal ulcer,3635 cases of stromal opacity,1060 cases of posterior elastic layer fold,137 cases of posterior elastic layer detachment,665 cases of keratic precipitate,176 cases of corneal perforation,127 cases of corneal foreign body,299 cases of after lamellar keratoplasty(LKP)and 234 cases of after penetrating keratoplasty(PKP).Among 1709 images,1596 were manually labeled.The average sensitivity and specificity of the corneal pathology detection model were 96.5%and 96.1%compared with the results of manual labeling.Fifteen samples were missed for detection,and the rate was 0.93%.The average Dice coefficients of the corneal stratification model for the corneal epithelium and stroma were 0.985 and 0.917,respectively.Conclusions Our artificial intelligence-based diagnosis system with AS-OCT is able to give quantified information and location information of corneal lesions with high accuracy,which can help ophthalmologists improve the efficiency and accuracy of diagnosis.
作者 李东芳 董燕玲 谢森 郭振 李素霞 郭晏 吕彬 谢立信 Li Dongfang;Dong Yanling;Xie Sen;Guo Zhen;Li Suxia;Guo Yan;Lyu Bin;Xie Lixin(Qingdao Eye Hospital,Shandong Eye Institute,Shandong First Medical University&Shandong Academy of Medical Sciences,Qingdao 266071,China;Zhongshan Ophthalmic Centre,Sun Yat-sen University,State Key Laboratory of Ophthalmology,Guangzhou 510060,China;Shandong Eye Hospital,Shandong Eye Institute,Shandong First Medical University&Shandong Academy of Medical Sciences,Jinan 250021,China;Pingan Technology(Shenzhen)Co.,Ltd.,Institute for Smart Health,Intelligent Medical Image Analysis,Shenzhen 518046,China)
出处 《中华眼科杂志》 CAS CSCD 北大核心 2021年第6期447-453,共7页 Chinese Journal of Ophthalmology
关键词 人工智能 深度学习 眼前半段 体层摄影术 光学相干 角膜测厚 Artificial intelligence Deep learning Anterior eye segment Tomography,optical coherence Corneal pachymetry
作者简介 通信作者:谢立信,Email:lixin_xie@hotmail.com。
  • 相关文献

参考文献1

二级参考文献5

共引文献19

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部