期刊文献+

基于深度学习的高分遥感影像典型地物检测方法应用实践 被引量:3

Application practice of high resolution remote sensing imagestypical ground object detection methods based on deep learning
在线阅读 下载PDF
导出
摘要 传统的基于高分辨率遥感影像的典型地物检测方法难以兼顾检测精度、处理速度和自动化程度,而深度学习方法在图像处理领域中的应用为解决上述问题提供了可能。选用RSOD-Dataset数据集,基于TensorFlow深度学习框架,采用Faster R-CNN、YOLOv3和SSD三种经典深度学习目标检测算法,对高分辨率遥感影像数据进行预处理并完成模型训练,实现了对高分辨率遥感影像中典型地物目标的自动化检测实践,并对三种深度学习算法进行了对比分析。实验结果表明:SSD算法进行典型地物检测的均值平均精度指标(mAP)达到86.62%,每秒帧数(FPS)达到60.26,均优于Faster R-CNN算法和YOLOv3算法;在对飞机、储油罐、立交桥、体育场等典型地物的检测过程中有效地提升了检测精度、处理速度和计算的自动化水平,具有较为明显的应用价值。 It is difficult to take into account detection accuracy,processing speed and automation degree in the traditional ground object detection method based on high-resolution remote sensing images,but the extensive application of deep learning in image processing makes it possible to solve the above problems.In this paper,based on the Faster R-CNN,YOLOv3(you only look once),SSD(single shot detector)deep learning object detection algorithm,the RSOD-Dataset is selected,and based on the TensorFlow deep learning framework,the high-resolution remote sensing images data were pre-processing and the model training was completed,the automatic detection of typical object targets in high-resolution remote sensing image data was realized and three deep learning algorithms were compared and analyzed.The experimental results show that the mean Average Precision(mAP)of SSD algorithm for typical ground object detection reaches 86.62%,and the number of frames per second(FPS)reaches 60.26,both better than the Faster R-CNN algorithm and YOLOv3 algorithm.The SSD object detection algorithm effectively improves the detection accuracy,processing speed,and calculation automation level in the detection of typical features such as aircraft,oil tanks,overpasses,and playgrounds,and has obvious practical application value.
作者 孙广伟 李博 陈嘉浩 张大富 范俊甫 SUN Guangwei;LI Bo;CHEN Jiahao;ZHANG Dafu;FAN Junfu(School of Architectural Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2021年第6期53-57,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东省自然科学基金项目(ZR2020MD015) 山东理工大学专业学位研究生教学案例库建设项目(4053-219059) 山东理工大学实验室建设项目(2019014)。
关键词 高分影像 深度学习 目标检测 地物检测 high-resolution remote sensing image deep learning object detection ground object detection
作者简介 第一作者:孙广伟,男,sgw_sdut@163.com;通信作者:张大富,男,zbzdf@sdut.edu.cn。
  • 相关文献

参考文献8

二级参考文献105

  • 1杨东侯,年晓红,杨胜跃.两种改进的BP神经网络学习算法[J].长沙大学学报,2004,18(4):54-57. 被引量:11
  • 2徐胜荣,李忠兴.自然景物中桥梁目标识别方法的研究[J].浙江大学学报(自然科学版),1995,29(3):275-281. 被引量:18
  • 3刘幺和,陈睿,彭伟,周蕾.一种BP神经网络学习率的优化设计[J].湖北工业大学学报,2007,22(3):1-3. 被引量:15
  • 4罗庆洲,尹球,匡定波.光谱与形状特征相结合的道路提取方法研究[J].遥感技术与应用,2007,22(3):339-344. 被引量:40
  • 5Rumelhart D E,Wollians R J.Learning internal representa-tion by error-propagation[J].Paral-lel Distributel Processing,Cambridge,MA MIT press,1986(1):318-362.
  • 6Claus B. Towards fully automatic generation of city models [ A ]. In: International Archives of Photogrammetry and Remote Sensing [ C ]. Amsterdam: XIX. 2000.
  • 7Jong-Hyeok JEONG, Masataka TAKAGI. Extraction Of Bridge Positions From Ikonos Images For Accuracy Control of Bridge Database [EB/OL]. http: //www. gisdevelopment. net/aars/acrs/2002/vhr/172. pdf
  • 8Aude Oliva,Antonio Torralba.The role of context in object recognition[J].Trends in Cognitive Sciences.2007(12)
  • 9Lior Wolf,Stanley Bileschi.A Critical View of Context[J].International Journal of Computer Vision.2006(2)
  • 10Antonio Torralba.Contextual Priming for Object Detection[J].International Journal of Computer Vision.2003(2)

共引文献1001

同被引文献38

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部