期刊文献+

基于卷积神经网络的高分遥感影像耕地提取研究 被引量:13

Cultivated Land Extraction from High Resolution Remote Sensing Image Based on Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 高效精准地提取遥感影像中的耕地对农业资源监测以及可持续发展具有重要意义,针对目前多数传统全卷积神经网络(FCN)模型在提取耕地时存在重精度而轻效率的缺陷,本文建立基于FCN的轻量级耕地图斑提取模型(LWIBNet模型),并结合数学形态学算法进行后处理,开展耕地图斑信息的自动化提取研究。该LWIBNet模型汲取了轻量级卷积神经网络和U-Net模型的优点,以Inv-Bottleneck模块(由深度可分离卷积、压缩-激励块和反残差块组成)为核心,采用高效的编码-解码结构为骨架,将LWIBNet模型分别与传统模型的耕地提取效果、经典FCN模型的轻量性和精确度进行对比,结果表明,LWIBNet模型比表现最优的传统模型Kappa系数提高12.0%,比U-Net模型的参数量、计算量、训练耗时、分割耗时分别降低96.5%、87.1%、78.2%和75%,且LWIBNet的分割精度与经典FCN模型相似。 It is of great significance for agricultural resources monitoring to accurately extract cultivated land map information from remote sensing images.To improve the defects of traditional models for extracting cultivated land and solve the problem that most FCN model pays more attention to accuracy but ignores the consumption of time and computing resources,a lightweight model for extracting cultivated land map spots was established based on FCN(LWIBNet),and post-processing combined with mathematical morphology algorithm were used to carry out automatic extraction of cultivated land information.LWIBNet drew on the advantages of lightweight convolutional neural network and U-Net model,and it was built with the core of Inv-Bottleneck(composed of deep separable convolution,compression-excitation block and inverse residual block)and the skeleton of efficient coding-decoding structure.Compared LWIBNet with the cultivated land extraction effect of traditional model,and the computational resources and time consumption of classical FCN model.The results showed that LWIBNet was 12.0%higher than the Kappa coefficient of the best traditional model,and compared with U-Net,LWIBNet had 96.5%,87.1%,78.2%and 75%less parameters,calculation,training time and split time-consuming,respectively.Moreover,the segmentation accuracy of LWIBNet was similar to that of the classical FCN model.
作者 陈玲玲 施政 廖凯涛 宋月君 张红梅 CHEN Lingling;SHI Zheng;LIAO Kaitao;SONG Yuejun;ZHANG Hongmei(Jiangxi Academy of Water Science and Engineering,Nanchang 330029,China;Jiangxi Key Laboratory of Soil Erosion and Prevention,Nanchang 330029,China;School of Hydraulic and Ecological Engineering,Nanchang Institute of Technology,Nanchang 330099,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期168-177,共10页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家科技奖后备项目培育计划项目(20212AEI91011) 江西省水利科技项目(201922ZDKT08、202022YBKT20、202224ZDKT11、202123YBKT06)
关键词 耕地 提取 高分遥感影像 卷积神经网络 LWIBNet cultivated land extraction high resolution remote sensing image convolutional neural network LWIBNet
作者简介 陈玲玲(1995—),女,助理工程师,主要从事深度学习与遥感信息提取研究,E-mail:banjietaiyang@foxmail.com;通信作者:宋月君(1982—),男,正高级工程师,博士,主要从事水土保持监测信息化研究,E-mail:well3292@126.com
  • 相关文献

参考文献14

二级参考文献200

共引文献443

同被引文献136

引证文献13

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部