摘要
图像分割是图像处理中的重要环节,如何提高图像分割的准确度一直以来都是图像领域的研究重点及难点.K-means聚类算法作为经典聚类算法得到广泛应用,但是,k值的选取往往难以确定.针对这一问题,提出了一种改进的K-means算法.首先将输入的彩色图像转化为灰度图像,统计灰度直方图的峰值数,将其设定为聚类数k,然后对原图像的每个像素点进行聚类,实现分割.实验结果表明,与传统的K-means算法相比,该算法能够确定最佳的聚类数,并且分割效果好.
Image segmentation is an important part of image processing.How to improve the accuracy of im-age segmentation has always been the focus and difficulty of image research.As a classical clustering algo-rithm,K-means clustering algorithm is widely used,but the selection of K value is often difficult to deter-mine.To solve this problem,this paper proposes an improved K-means algorithm.Firstly,the input color im-age is converted into gray image,and the peak number of gray histogram is counted and set as clustering number K.Then,each pixel point of the original image is clustered to achieve segmentation.The experimental results show that compared with the traditional K-means algorithm,this algorithm can determine the optimal clustering number and has better segmentation effect.
作者
高樱萍
宋丹
王雅静
张轩宇
GAO Ying-ping;SONG Dan;WANG Ya-jing;ZHANG Xuan-yu(College of Computer and Communication,Hunan Institute of Engineering1,Xiangtan 411104,China)
出处
《湖南工程学院学报(自然科学版)》
2021年第2期54-59,共6页
Journal of Hunan Institute of Engineering(Natural Science Edition)
基金
湖南省研究生教育教学改革一般项目(湘教通〔2019〕293号)
教育部人文社会科学研究项目(20YJA880045)
湖南省研究生科研创新项目(CX20190962)
2020年湖南工程学院研究生创新项目(YC2013).
关键词
图像分割
K-MEANS算法
聚类数目
马氏距离
image segmentation
K-means algorithm
number of clusters
Mahalanobis Distance
作者简介
高樱萍(1997-),女,硕士研究生,研究方向:服装图像处理;通信作者:宋丹(1976-),男,博士,教授,研究方向:智能优化算法,教育大数据.