期刊文献+

一种改进的遗传k-means聚类算法 被引量:23

An Improved Genetic k-means Algorithm for Optimal Clustering
原文传递
导出
摘要 在经典的k-means聚类算法中,聚类数k必须事先给定,然而在现实中k很难被精确的确定.本文提出了一种改进的遗传k-means聚类算法,并构造了一个用来评价分类程度好坏的适应度函数,该适应度函数考虑的是在提高紧凑度(类内距)和分离度(类间距)的同时使得分类个数尽可能少.最后采用两个人工数据集和三个UCI数据集对k-means聚类算法(KM),遗传聚类算法(GA),遗传k-means聚类算法(GKM)和改进的遗传k-means聚类算法(IGKM)进行比较研究,比较的指标有类间距、类内距和分类正确率.研究证明改进的遗传k-means算法能够自动获取最佳聚类数k并且保持较高的正确率. In the classical k-means algorithm,the value of k must be confirmed in advance.It is difficulty to confirm accurately the value of k in reality.This paper proposals an improved genetic k-means algorithm(IGKM) and constructs a fitness function defined as a product of three factors,maximization of which ensures the formation of a small number of compact clusters with large separation between at least two clusters.At last,two artificial and three real-life data sets are considered for experiments that compare IGKM with k-means algorithm,genetic cluster algorithm and genetic k-means algorithm by inter-cluster,inner-cluster and rate of right.The experiments show that IGKM can get the optimal value of k automatically and keep the high accuracy.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第8期104-111,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(70273044 70573101) 教育部人文社科基金项目(06JA880668
关键词 聚类 K-MEANS算法 遗传算法 cluster k-means algorithm genetic algorithm
  • 相关文献

参考文献9

二级参考文献16

  • 1AnsariN HouE 李军 边肇祺译.用于最优化的计算智能[M].北京:清华大学出版社,1999..
  • 2Treshansky A,McGraw R.An overview of clustering algorithms[A].Proceedings of SPIE,The International Society for Optical Engineering[C].2001(4367):41-51.
  • 3Clausi D A.K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation[J].Pattern Recognition,2002,35:1959-1972.
  • 4Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man,and Cybernetics _ Part B:Cybernetics,1998,28(3):301-315.
  • 5Ramze R M,Lelieveldt B P F,Reiber J H C.A new cluster validity indexes for the fuzzy c-mean[J].Pattern Recognition Letters,1998,19:237-246.
  • 6Bandyopadhyay S, Maulik U. An evolutionary technique based on K-Means algorithm for optional clustering in R^N[J]. Information Sciences, 2002,146 : 221-237.
  • 7Tou J T,Gonzalez R C. Pattern recognition principle[M]. Addison Wesley,Reading,1974.
  • 8Krishma K, Murty M N. Genetic k-means algorithm[J].IEEE Trans on System,Man,and Cybernetics. Part B,1999,29(3):433-439.
  • 9Maulik U,Bandyopadhay S. Genetic algorithm-based clustering technique[J]. Pattern Recognition,2000,33(9):1455-1465.
  • 10李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535

共引文献374

同被引文献215

引证文献23

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部