期刊文献+

基于遗传算法优化的云模型PID液压弯辊板形控制 被引量:6

Hydraulic bending roll flatness control of cloud model PID based on genetic alogorithm optimization
在线阅读 下载PDF
导出
摘要 为实现液压弯辊板形控制系统的精确控制,设计了一种基于遗传算法优化的云模型PID控制器,该算法将云模型处理不确定性问题的优势和PID控制的良好稳定性相结合,并且运用遗传算法全局优化能力对云模型PID控制器的数字特征进行了优化,进一步改进了云模型PID控制器的控制效果。以某公司1220 mm液压弯辊板形控制系统作为仿真对象进行了仿真,结果表明,基于遗传算法优化的云模型PID控制对提高液压系统的油压动态响应速度和稳态跟踪精度十分有效,其控制效果优于无优化的云模型PID控制以及传统PID控制。 To realize the precise control of hydraulic bending roll flatness control system,a cloud model PID controller based on genetic algorithm optimization was designed. The algorithm combines the advantages of cloud model in dealing with uncertainty problems and the good stability of PID control,and the global optimization ability of genetic algorithm was used to optimize the digital characteristics of cloud model PID controller. The control effect of cloud model PID controller is further improved. The simulation of 1220 mm hydraulic bending roll flatness control system of a company was carried out. The results show that the cloud model PID control based on genetic algorithm optimization is very effective to improve the dynamic response speed and steady-state tracking accuracy of hydraulic system,and its control effect is better than that of the cloud model PID control without optimization and the traditional PID control.
作者 白涛 BAI Tao(Department of Student Affairs,Chengde Petroleum College,Chengde 067000,China)
出处 《塑性工程学报》 CAS CSCD 北大核心 2021年第4期206-211,共6页 Journal of Plasticity Engineering
关键词 液压弯辊 板形控制 遗传算法 云模型 PID控制 hydraulic bending roll flatness control genetic alogorithm cloud model PID control
作者简介 第一作者/通信作者:白涛,男,1987年生,硕士研究生,讲师,主要从事板带轧制过程人工智能优化控制研究,E-mail:343850853@qq.com。
  • 相关文献

参考文献11

二级参考文献108

共引文献1800

同被引文献71

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部