期刊文献+

改进型U-Net网络的左心室超声心动图像分割 被引量:3

Left Ventricular Echocardiography Image Segmentation Based on Improved U-Net network
在线阅读 下载PDF
导出
摘要 超声心动图像是诊断心脏疾病、分析心脏功能的重要手段,其中左心室大小、形态是判断心脏是否正常的重要参数,而对超声心动图像中左心室进行有效分割是获取左心室大小、形态等参数的关键。在传统U-Net网络基础上引入密集链接,构建一种对左心室超声心动图进行精确分割的深度学习模型。实验结果表明,密集链接的引入可以有效提高分割精度,该模型最终Dice系数为91.76%±1.78%,而传统的U-Net网络Dice系数为83.52%。和全连接网络等方法比较,该方法具有更高的精度。 Echocardiographic image is an important mean to diagnose heart disease and analyze cardiac function.The size and shape of left ventricle are important parameters to judge whether the heart is normal.Effective segmentation of left ventricle in echocardiographic image is the key to obtain the parameters such as left ventricular size and morphology.In this paper,based on the traditional U-Net network,Dense links are introduced to construct a deep learning model for accurate segmentation of left ventricular echocardiography.The experimental results show that the introduction of Dense links can effectively improve the segmentation accuracy.The final Dice coefficient of this model is 91.76%±1.78%,while the Dice coefficient of traditional U-Net network is 83.52%.Compared with the results of Fully connected network and other methods,the proposed method has higher accuracy.
作者 葛帅 严加勇 谢利剑 姜逊渭 GE Shuai;YAN Jia-yong;XIE Li-jian;JIANG Xun-wei(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Medical Instrument,Shanghai University of Medicine&Health Science,Shanghai 201318,China;Children's Hospital Affiliated to Shanghai Jiaotong University,Shanghai 200062,China)
出处 《软件导刊》 2021年第2期206-209,共4页 Software Guide
基金 上海市科委西医引导类项目(18411965800) 上海交大医工交叉重点项目(ZH2018ZDA26)。
关键词 左心室分割 超声图像 深度学习 密集连接 U-Net left ventricular segmentation ultrasound image deep learning dense connection U-Net
作者简介 葛帅(1996-),男,上海理工大学医疗器械与食品学院硕士研究生,研究方向为生物医学仪器及医学信息技术;通讯作者:谢利剑。
  • 相关文献

参考文献10

二级参考文献72

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2郑玮,康戈文,陈武凡,李小文.基于模糊马尔可夫随机场的无监督遥感图像分割算法[J].遥感学报,2008,12(2):246-252. 被引量:17
  • 3沙宇恒,丛琳,孙强,焦李成.基于Contourlet域HMT模型的多尺度图像分割[J].红外与毫米波学报,2005,24(6):472-476. 被引量:22
  • 4陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61-64. 被引量:10
  • 5Duarte M F, Wakin M B, Baraniuk R G. Wavelet-domain compressive signal reconstruction using a Hidden Markov Tree model[ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: 5137-5140.
  • 6Yan F X, Cheng L Z, Peng S L. Dual-tree complex wavelet hidden Markov tree model for image denoising [ J ]. Electronics Letters,2007,43(18) :973-975.
  • 7Le P A, Hart M, Boussion N, et al. Conditional partial volume correction for emission tomography: A wavelet-based hidden Markov model and multi-resolution approach [ J ]. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro ,2008 :1319-1322.
  • 8Papandreou G, Maragos P, Kokaram A. Image inpainting with a wavelet domain Hidden Markov tree model [ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: 773-776.
  • 9Choi H, Baraniuk R G. Multiscale image segmentation using Wavelet-domain hidden Markov models [ J ]. IEEE Transactions on Image Processing, 2001,10 ( 9 ) : 1309-1321.
  • 10Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Transactions on Signal Processing, 1998,42 (4) :886-902.

共引文献57

同被引文献26

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部