期刊文献+

非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性 被引量:1

Convergence and Stability of Semi-Implicit Euler-Maruyama Solution for Nonlinear Stochastic Fractional Integro-Differential Equations
在线阅读 下载PDF
导出
摘要 主要对非线性随机分数阶积分微分方程半隐式欧拉方法的收敛性进行了针对性研究,证明了此类半隐式欧拉方法具有强一阶收敛性.此外,在精确解满足均方稳定性的前提下,研究了非线性随机分数阶积分微分方程半隐式欧拉解的均方稳定性,最后利用数值算例验证了数值解的收敛性. This paper is mainly concerned with the convergence analysis of the semi-implicit Euler-Maruyama(EM)method for the nonlinear SFIDEs.It is proved that the semi-implicit EM solution of SFIDEs shares strong first order sharp convergence.Furthermore,on the premise that the exact solution satisfies the mean-square stability,we researched the mean-square stability of the semi-implicit EM solution of the nonlinear SFIDEs.At last,some numerical examples were presented to demonstrate the convergence of the numerical solutions.
作者 李晓卫 贾宏恩 郭平 LI Xiao-wei;JIA Hong-en;GUO Ping(School of Mathematical Sciences, Taiyuan University of Technology, Taiyuan 030024, China)
出处 《中北大学学报(自然科学版)》 CAS 2021年第1期6-12,共7页 Journal of North University of China(Natural Science Edition)
关键词 随机分数阶积分微分方程 半隐式欧拉方法 收敛性 均方稳定性 stochastic fractional integral differential equation semi-implicit Euler-Maruyama method convergence mean-square stability
作者简介 李晓卫(1995-),女,硕士生,主要从事计算数学的研究.
  • 相关文献

参考文献2

二级参考文献11

  • 1任永.非李普希茨条件下无穷维随机微分方程的适度解(英文)[J].数学研究,2005,38(3):231-237. 被引量:2
  • 2王文强,黄山,李寿佛.非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J].计算数学,2007,29(2):217-224. 被引量:10
  • 3Cao W R, Liu M Z and Fan Z C. MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J]. Appl. Math. Comput., (2004), 159: 127-135.
  • 4Ding X H, Wu K N and Liu M Z. Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations[J]. International Journal of Computer Mathematics, (2006), 83: 753-761.
  • 5Liu M Z, Cao W R and Fan Z C. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J]. J. Comput. Appl. Math., (2004), 170: 255-268.
  • 6Mao X R. Razumikhin-type theorems on eaponential stability of stichastic functional differential equations[J]. Stoch. Process. Appl, (1996), 65: 233-250.
  • 7Rathinasamy A and Balachandran K. Mean square stability of semi-implicit Euler method for linear stochastic differential equations with multiple delays and Markovian switching[J]. Appl. Math. Comput., (2008), 206: 968-979.
  • 8Rathinasamy A and Balachandran K. Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations[J]. Nonlinear Analysis: Hybrid Systems, (2008), 2: 1256-1263.
  • 9Wang Z Y and Zhang C J. An analysis of stability of milstein method for stochastic differential equations with delay[J]. Computers and Mathematics with Applications, (2006), 51: 1445-1452.
  • 10王文强,黄山,李寿佛.非线性随机延迟微分方程半隐式Euler方法的均方稳定性[J].数值计算与计算机应用,2008,29(1):73-80. 被引量:3

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部