期刊文献+

典型多特征决策融合方法及在无人机SAR图像目标识别中的应用 被引量:1

Typical Multi-feature Decision Fusion Methods with Application to Target Recognition of UAV SAR Image
在线阅读 下载PDF
导出
摘要 多特征决策融合是模式识别中常用的手段之一,可以有效结合不同类特征的优点从而提高分类性能。论文分析了三类典型的多特征决策融合算法并讨论了它们在无人机合成孔径雷达(SAR)目标识别中的运用效能。它们包括并行决策融合、级联决策融合以及联合决策融合。实验中,以MSTAR数据集为基础分类了这三类多特征决策融合方法对于SAR目标识别性能的影响。 Multi-feature decision fusion is a usual method in pattern recognition field,which could effectively combine the ad⁃vantages of different kinds of features.In this paper,three typical multi-feature decision fusion methods are analyzed and their ap⁃plications to target recognition of unmanned aerial vehicle(UAV)synthetic aperture radar(SAR)images are discussed.The three methods are parallel decision fusion,hierarchical decision and joint decision fusion.In the experiments,the MSTAR dataset is em⁃ployed to investigate the effects of three multi-feature decision fusion methods on the performance of SAR target recognition.
作者 马梓元 龚华军 王新华 刘禹 MA Ziyuan;GONG Huajun;WANG Xinhua;LIU Yu(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211100)
出处 《舰船电子工程》 2020年第12期96-99,共4页 Ship Electronic Engineering
关键词 合成孔径雷达 目标识别 多特征决策融合 synthetic aperture radar target recognition multi-feature decision fusion
作者简介 马梓元,男,硕士研究生,研究方向:先进飞行控制技术;龚华军,男,教授,博士生导师,研究方向:先进飞行控制技术、光传飞控技术;王新华,男,副教授,硕士生导师,研究方向:先进飞行控制技术;刘禹,女,硕士研究生,研究方向:先进飞行控制技术。
  • 相关文献

参考文献7

二级参考文献48

  • 1吴敏,张磊,邢孟道,段佳,徐刚.基于分布式压缩感知的全极化雷达超分辨成像[J].电波科学学报,2015,30(1):29-36. 被引量:4
  • 2徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 3Bartlett M S,Movellan J R and Sejnowski T J.2002.Face recognition by independent component analysis.IEEE Transactions on Neural Networks,13(6):1450–1464.
  • 4Huan R H and Yang R L.2008.SAR target recognition based on MRF and Gabor wavelet feature extraction.IEEE International Geo-science and Remote Sensing Symposium(IGARSS),Boston,Vol.2:Ⅱ-907–Ⅱ-910.
  • 5Hyvarinen A.1999.Fast and robust fixed-point algorithms for inde-pendent component analysis.IEEE Transactions on Neural Net-works,10(3):626–634.
  • 6Lee T S.1996.Image representation using2D Gabor wavelet.IEEE Transactions on PAMI,18(10):959–971.
  • 7Li M K,Guan J,Duan H and Gao X.2006.SAR ATR based on support vector machines and independent component analysis.Interna-tional Conference on Radar,Shanghai:1–3.
  • 8Lu X G,Han P and Wu R B.2007.Two-dimensional PCA for SAR automatic target recognition.1st Asian and Pacific Conference on Synthetic Aperture Radar,Huangshan,China:513–516.
  • 9Manjunath B S and Ma W Y.1996.Texture features for browsing and retrieval of image data.IEEE Transactions on Pattern Analysis and Machine Intelligence,18(8):837–842.
  • 10Martinez A M and Kak A C.2001.PCA versus LDA.IEEE Transactions on Pattern Analysis and Machine Intelligence,23(2):228–233.

共引文献136

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部