期刊文献+

基于知识图谱的智能问答研究综述 被引量:85

Survey of Intelligent Question Answering Research Based on Knowledge Graph
在线阅读 下载PDF
导出
摘要 基于知识图谱的问答是近年来研究热点,从基于模板、语义解析、深度学习、知识图谱嵌入四方面介绍基于知识图谱智能问答实现,归纳了各类方法的优缺点,及尚未解决的关键问题。结合当前人工智能技术发展,重点介绍了基于深度学习的智能问答,有助于更多研究者投身于智能问答研究,根据不同行业需求研发适用于不同领域的问答系统,提高社会智能化信息服务水平。 The answer selection model based on knowledge graph has become one of the hottest directions at present.This paper introduces the implementation of answer selection model based on knowledge graph from four aspects of template method,semantic parsing,deep learning and knowledge graph embedding,sums up their advantages,disadvantages and unsolved problem.Combined with the development of artificial intelligence technology,this paper introduces intelligent question-answer system based on deep learning.This research is helpful for more researchers to devote themselves to the intelligent question-answer system and develops different kinds of intelligent question-answer system to improve the social intelligent information service.
作者 王智悦 于清 王楠 王耀国 WANG Zhiyue;YU Qing;WANG Nan;WANG Yaoguo(Academy of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Information Center,People’s Hospital of Xinjiang Autonomous Region,Urumqi 830001,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第23期1-11,共11页 Computer Engineering and Applications
基金 国家自然科学基金新疆联合基金(No.U1603262) 国家级大学生创新训练项目(No.20180755075X) 自治区大学生创新训练项目(No.S20190755047)。
关键词 智能问答 知识图谱 语义解析 深度学习 intelligent questions and answers knowledge graph semantic analysis deep learning
作者简介 王智悦(1995—),男,硕士,研究领域为自然语言处理、智能问答;通信作者:于清(1973—),女,硕士,副教授,CCF会员,研究领域为自然语言处理、机器翻译、智能问答,E-mail:yuqing0131@126.com。
  • 相关文献

参考文献6

二级参考文献21

  • 1[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 2[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 3[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 4[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 5[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 6[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 8[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[6]S-M Kim,D-H Baek,S-B Kim,H-C Rim. Question Answering Considering Semantic Categories and CoOccurrence Density. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献503

同被引文献730

引证文献85

二级引证文献402

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部