摘要
为了分析一类二阶线性复微分方程的亚纯解,构建一类二阶线性复微分方程模型及其参数解析模型,将权重分析矩阵作为学习参数进行微分方程的亚纯解自适应加权学习.建立亚纯解分布的正定对称矩阵,通过渐近稳定性学习实现方程的亚纯解解析和收敛性控制,并通过测试证明了一类二阶线性复微分方程亚纯解的渐进收敛性.
To analyze the meromorphic solutions of a class of second-order linear complex differential equations,a class of second-order linear complex differential equation model and its corresponding parameter analytic model are constructed.The weight analysis matrix is used as the learning parameter for adaptive weighted learning of meromorphic solution of differential equation.The positive definite symmetric matrix of Meromorphic solution distribution is established.In addition,the asymptotic stability of meromorphic solutions is studied by learning asymptotic stability.The asymptotic convergence of meromorphic solutions of a class of second order linear complex differential equations is proved.
作者
缪彩花
MIAO Caihua(Teacher Education College,Lijiang Teachers College,Lijiang Yunnan 674199)
出处
《宁夏师范学院学报》
2020年第10期27-32,共6页
Journal of Ningxia Normal University
关键词
二阶线性复微分方程
亚纯解
收敛性
约束条件
控制
Second-order linear complex differential equation
Meromorphic solution
Convergence
Constraints
Control
作者简介
缪彩花(1985-),女,云南宜威人,讲师,硕士,研究方向:复分析和数学教育.