期刊文献+

基于改进灰狼算法的并网交流微电网经济优化调度 被引量:17

Economic Optimization Scheduling of Grid-connected Alternating Current Microgrid Based on Improved Gray Wolf Algorithm
在线阅读 下载PDF
导出
摘要 为了提高微电网的日运转经济效益,构建了并网模式下交流微电网运转结构图,建立了并网模式下交流微电网日优化经济调度数学模型,该模型包含有多个子目标函数、多个约束条件。针对传统灰狼优化算法无法很好均衡算法的全局寻优能力和局部寻优能力,解决寻优精度差的问题,引进一种基于非线性变化的收敛因子均衡算法的全局寻优能力和局部寻优能力,从而提高灰狼算法的寻优精度。采用改进的灰狼算法和原始灰狼算法对四个基准测试函数进行仿真,实验结果表明改进灰狼算法相较于原始灰狼算法能够获得更优解,初步证实了改进灰狼算法的可行性及优越性,再将改进灰狼算法和原始灰狼算法分别应用于并网模式下交流微电网日优化数学模型求解,通过对仿真结果对比分析,证实了改进灰狼算法的确能够更好地提高并网模式下交流微电网的日运转经济效益。 In order to improve the economic benefits of daily operation of the microgrid,the operation structure diagram of the alternating current(AC)microgrid in grid-connected mode was constructed,and a mathematical model of daily optimal economic dispatch of the AC microgrid in grid-connected mode was established.The model contained many sub-objective functions and constraints.The traditional gray wolf optimization algorithm could not balance the global and local optimization capabilities and poor optimization accuracy of the algorithm.To deal with it,a global optimization capability and local optimization of the convergence factor equilibrium algorithm based on nonlinear changes were introduced to improve the optimization accuracy of the gray wolf algorithm.The improved gray wolf algorithm and the original gray wolf algorithm were used to simulate the four benchmark test functions.The experimental results show that the improved gray wolf algorithm can obtain a better solution than the original gray wolf algorithm,indicating the feasibility and superiority of the improved gray wolf algorithm.Then,the improved gray wolf algorithm and the original gray wolf algorithm were applied to solve the daily optimization mathematical model of the AC microgrid under grid connection mode.Through the comparison of the simulation results,it is confirmed that the improved gray wolf algorithm can indeed improve the economic benefits of daily operation of AC microgrids in grid-connected mode.
作者 高瑜 黄森 陈刘鑫 黄军虎 GAO Yu;HUANG Sen;CHEN Liu-xin;HUANG Jun-hu(School of Electrical and Control Engineering,Xi an University of Science and Technology,Xi an 710054,China;State Grid Shaanxi Hanzhong Power Supply Company,Hanzhong 723000,China)
出处 《科学技术与工程》 北大核心 2020年第28期11605-11611,共7页 Science Technology and Engineering
关键词 微电网 优化调度 灰狼优化算法 收敛因子 micro grid optimal operation grey wolf optimizer convergence factor
作者简介 第一作者:高瑜(1978-),男,汉族,陕西横山人,高级工程师。研究方向:新能源应用。E-mail:312939249@qq.com。
  • 相关文献

参考文献8

二级参考文献69

  • 1方勇,李渝曾.电力市场中激励性可中断负荷合同的建模与实施研究[J].电网技术,2004,28(17):41-46. 被引量:54
  • 2赵松原,黄明恪.模拟退火算法和POD降阶模态计算在翼型反设计中的应用[J].空气动力学学报,2007,25(2):236-240. 被引量:10
  • 3Tsikalakis A G, Hatziargyriou N D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 241-248.
  • 4Bagherian A, Tafreshi S M M. A developed energy management system for a microgrid in the competitive electricity market[C]//Proceedings of IEEE Bucharest Power Tech. Bucharest: IEEE, 2009: 1-6.
  • 5Mohamed F A, Koivo H N. Online management of microgrid with battery storage using multiobjective optimization[C]//Proceedings of International Conference on Power Engineering, Energy and Electrical Drives. Setubal, Portugal: IEEE; 2007: 231-236.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Dufo-L6pez R, Bemal-Agustin J L. Multi-objective designof PV-wind-diesel-hydrogen-battery systems[J] Renewable Energy, 2008, 33(12): 2559-2572.
  • 8Lin Song, NGPM: A NSGA-II program in Matlab vl.4 [CP/OL]. 2011 [2011-07-26]. http://www.mathworks.en/ matlabeentral/fileexehange/31166.
  • 9王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103. 被引量:409
  • 10王向慧,连志春,徐志英,唐云岚.基于Pareto最优概念的多目标进化算法研究[J].计算机工程与应用,2008,44(27):58-61. 被引量:5

共引文献132

同被引文献196

引证文献17

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部