期刊文献+

基于网络药理学探讨增液汤改善脂质代谢紊乱可能分子作用机制 被引量:1

Study on the Possible Molecular Mechanism of Zengye Decoction Improving Lipid Metabolism Disorder Based on Network Pharmacology
在线阅读 下载PDF
导出
摘要 目的本研究旨在运用网络药理学方法探讨增液汤改善脂质代谢紊乱的可能物质基础及机制。方法基于BATMAN-TCM并联用中药系统药理学数据库与分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP)及化学数据库(Chemistry Database),筛选增液汤中的有效化学成分,基于BATMAN-TCM、TCMSP、DrugBank和UniProt筛选其有效化学成分的对应靶点;DiGSeE和GeneCards、DisGeNET数据库筛选脂质代谢紊乱疾病对应靶标,并对增液汤靶点与脂质代谢紊乱疾病靶标进行维恩图(Venn)分析,并在此基础上建立"增液汤-中药-有效化学成分-共有靶点"网络结构模型;利用DAVID及OmicShare数据库对靶标进行京都基因与基因组百科全书数据库(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集、基因本体论(Gene Ontology,GO)分析并作可视化图;利用STRING在线工具对共有靶点相互作用展开分析,构建蛋白互作(protein-protein interaction,PPI)网络,并利用Cytoscape软件进行拓扑参数分析,寻找关键核心靶点。结果增液汤共筛选出29个有效成分,对应靶点数目为304个,脂质代谢紊乱靶点为8585个,二者共有靶标247个;GO及KEGG富集结果显示其功能多集中在代谢、细胞增殖、免疫系统等,可能与代谢通路、脂肪细胞因子信号通路、钙信号通路、氨酰基-tRNA生物合成途径通路等相关;数据分析显示其核心靶点为:ASS1、TNF、GRIN2B、DLG4、GRIN2A、SHMT1、SHMT2、DRD2、GLUL、CAT。结论增液汤有效成分改善脂质代谢紊乱具有多靶点多通路特点,主要与代谢通路、抗氧化、脂肪因子信号通路等密切相关。 Objective This study aimed to explore the possible material basis and mechanism of Zengye Decoction to improve lipid metabolism disorder by using network pharmacology. Methods Screening the effective chemical constituents in the liquid-increasing soup based on the TCMSP and Chemistry Database databases in parallel with BATMAN-TCM. Screening for corresponding targets of effective chemical constituents based on BATMAN-TCM,TCMSP,DrugBank and UniProt. DiGSeE,GeneCards,and DisGeNET databases were used to screen targets for lipid metabolism disorders,and Venn analysis was performed on the target of the liquid-enriched soup and the target of lipid metabolism disorders. And on this basis,the network structure model of"Zengye Decoction-Chinese medicine-effective chemical composition-common targets"was established. The KEGG pathway enrichment,gene ontology(GO)analysis and visualization of the target were performed using the DAVID and OmicShare databases. The STRING online tool was used to analyze the common target interactions,construct a PPI network,and use Cytoscape software to analyze the topological parameters to find key coretargets. Results A total of 29 active components were screened out in the solution,the number of corresponding targets was 304,and the target of lipid metabolism disorder was 8 585. The two had a target of 247. The results of GO and KEGG enrichment showed that their functions were concentrated. Metabolism,cell proliferation,immune system,etc. may be related to metabolic pathways,adipocytokines signaling pathways,calcium signaling pathways,aminoacyl-tRNA biosynthetic pathways,etc. Data analysis showed that its core targets were:ASS1,TNF,GRIN2 B,DLG4,GRIN2 A,SHMT1,SHMT2,DRD2,GLUL,CAT. Conclusion The active ingredient of Zengye Decoction has many multi-target and multichannel characteristics,which are closely related to metabolic pathway,anti-oxidation and adipokines signaling pathway.
作者 邓龙飞 张建伟 刘海燕 刘力 DENG Longfei;ZHANG Jianwei;LIU Haiyan;LIU Li(Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)
出处 《辽宁中医药大学学报》 CAS 2020年第6期143-148,F0003,共7页 Journal of Liaoning University of Traditional Chinese Medicine
基金 上海中医药大学研究生专项科研项目(Y201903)。
关键词 增液汤 脂质代谢紊乱 信号通路 网络药理学 Zengye Decoction lipid metabolism disorder signaling pathway network pharmacology
作者简介 邓龙飞(1988-),男,安徽合肥人,博士研究生,研究方向:中药制药技术、中药新剂型与新型给药系统研究;通讯作者:刘力(1961-),女,上海人,主任药师,博士研究生导师,研究方向:中药制药技术、中药新剂型与新型给药系统研究。
  • 相关文献

参考文献8

二级参考文献33

  • 1罗云坚,余绍源.消化科专病中医临床诊治[M].北京:人民卫生出版社,2003:249.
  • 2Hopkins AL. Network pharmaeology[J]. Nat Biotechnol, 2007, 25(10):1110-1111.
  • 3Hopkins AL. Network pharmacology: the next paradigm indrug discovery[J]. Nat Chem Biol, 2008, 4(11):682-690.
  • 4Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease[J]. Nat Rev Gen- et,2011,12(1) :56-68.
  • 5Satoh JI. Molecular network of microRNA targets in Alzhei- mer' s disease brains[J]. Exp Neurol, 2012,235 (2) : 436-446.
  • 6Lopes CT, Franz M, Kazi F, etal. Cytoseape web: an inter- active web-based network browser[J]. Bioinformatics, 2010, 26(18): 2347-2348.
  • 7Li S, Zhang B. Traditional Chinese medicine network phar- macology: theory, methodology and application[-J]. Chin J Nat Med,2013,11(2) .,110-120.
  • 8Azmi AS. Adopting network pharmacology for cancer drug discovery[J]. Curr Drug Discov Technol, 2013, 10(2): 95- 105.
  • 9Yang M, Chen JL, Xu LW, et al. Navigating traditional Chinese medicine network pharmacology and computational tools[J]. Evid Based Complement Alternat Med, 2013, 2013: 731969.
  • 10Li S, Zbang B, Jiang D, et al. Herb network construction and co-module analysis for unco'Vering the combination rule of traditional Chinese herbal formulae[-J]. BMC Bioinformatics, 2010, 11(suppl 11) ..$6.

共引文献320

同被引文献28

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部