期刊文献+

基于k密集近邻算法的局部Fisher向量编码方法 被引量:2

Local Fisher vector encoding method based on k-dense neighborhood algorithm
在线阅读 下载PDF
导出
摘要 在基于视觉词包模型的图像分类方法中,Fisher向量编码是常用的图像表示方法之一.该方法利用每一个特征关于所有高斯子模型似然函数的梯度信息来构建图像表达.而在编码过程中,每一个特征都会被投影到所有的高斯子模型上并进行编码,同时子模型之间的内在差异也未被考虑,这些不足削弱了Fisher向量的表达能力.为此,提出一种基于k密集近邻算法的局部Fisher向量编码方法.在编码过程中该方法引入局部性约束原则,并利用图像特征空间中高斯子模型间的拓扑结构差异.在多个数据集上进行测试,结果表明改进方法能够有效提升分类的准确率. For the image classification methods based on the bag-of-visual-words model,Fisher vector(FV)encoding is one of the popular image representation approaches.In this method,gradient information of the likelihood functions,which is achieved by fitting each feature with all Gaussian sub-models,is used to build image representation.However,in this encoding procedure,each feature is mapped to all of the Gaussian sub-models and encoded by them,and the inherent differences between these sub-models have not been considered.These drawbacks limit the representative ability of the Fisher vector.To solve these problems,a local Fisher vector encoding approach based on k-dense neighborhood(KDN)algorithm is proposed,which introduces the local constraint and utilizes the difference between the topological structures of the Gaussian sub-models.Experiments are conducted on several benchmark datasets,and the results demonstrate the effectiveness of the proposed method in improving the accuracy of the classification.
作者 冀治航 胡小鹏 杨博 田云云 王凡 JI Zhihang;HU Xiaopeng;YANG Bo;TIAN Yunyun;WANG Fan(School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China)
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2020年第4期411-419,共9页 Journal of Dalian University of Technology
基金 国家重大专项资助项目(2018YFA0704605) “十三五”重大专项资助项目(2017ZX05064)。
关键词 视觉词包模型 图像分类 Fisher向量编码 k密集近邻算法 bag-of-visual-words model image classification Fisher vector encoding k-dense neighborhood algorithm
作者简介 冀治航(1979-),男,博士生,E-mail:jizhihang2000@163.com;王凡(1975-),女,博士,副教授,E-mail:wangfan@dlut.edu.cn。
  • 相关文献

参考文献2

二级参考文献26

  • 1Joachims T. Text categorization with support vector machines: learning with many relevant features [C] // Machine Learning: ECML-98. Berlin: Springer Berlin Heidelberg, 1998 : 137-142.
  • 2Boiman O, Shechtman E, Irani M. In defense of nearest-neighbor based image classification [C] //26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Piscataway: IEEE, 2008.
  • 3Jurie F, Triggs B. Creating efficient codebooks for visual recognition [C] // 10th IEEE International Conference on Computer Vision, 2005. ICCV 2005 (Volume: D. Piscataway: IEEE, 2005 : 604-610.
  • 4Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [C] // Proceedings-2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006. New York: IEEE Computer Society, 2006 : 2169-2178.
  • 5Bosch A, Zisserman A, Mufioz X. Image classification using random forests and ferns [C] // 2007 IEEE llth International Conference on Computer Vision, ICCV. Piscataway:IEEE, 2007.
  • 6Maji S, Berg A C, Maliks J. Classification using intersection kernel support vector machine is efficient [C] // 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Piscataway: IEEE, 2008.
  • 7YANG Jian-chao, YU Kai, GONG Yi-hong, et al. Linear spatial pyramid matching using sparse coding for image classification [C] //2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. Piscataway:IEEE, 2009:1794-1801.
  • 8GAO Sheng-hua, Tsang I, Chia L, et al. Local features are not lonely Laplacian sparse coding for image classification [C]//2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Piscataway: IEEE, 2010:3555-3561.
  • 9Kavukcuoglu K, Ranzato M, Fergus R, et al. Learning invariant features through topographic filter maps [C] // 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. Piscataway:IEEE, 2009 : 1605-1612.
  • 10Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration [C] //2009 IEEE 12th International Conference on Computer Vision.Piscataway: IEEE, 2009 : 2272-2279.

共引文献16

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部