期刊文献+

基于核拉普拉斯稀疏编码的图像分类 被引量:2

Kernel Laplacian sparse coding for image classification
在线阅读 下载PDF
导出
摘要 使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,增强稀疏编码的性能.在3个标准数据集上的实验结果表明,所提出的基于KLSc的图像分类算法具有良好的分类效果,分类正确率优于LSc. Sparse coding can achieve good performance in some computer vision problems.However, past sparse coding was implemented in the original feature space.Kernel method can acquire high dimensional nonlinear mapping characteristics.Inspired by it,the Laplacian sparse coding (LSc)is extended,and the kernel Laplacian sparse coding (KLSc)is proposed.It can reduce the feature quantization error and enhance the sparse coding performance.Experimental results of three standard datasets show that the proposed image classification algorithm based on KLSc has good classification effect,and the correct classification rate is better than that of LSc method.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第2期192-197,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(61371157)
关键词 图像分类 稀疏编码 拉普拉斯稀疏编码 核方法 空间金字塔匹配(SPM) image classification sparse coding Laplacian sparse coding kernel method spatial pyramid matching (SPM)
作者简介 张立和(1976-),男,副教授,E—mail:zhanglihe@dlut.edu.cn.
  • 相关文献

参考文献17

  • 1Joachims T. Text categorization with support vector machines: learning with many relevant features [C] // Machine Learning: ECML-98. Berlin: Springer Berlin Heidelberg, 1998 : 137-142.
  • 2Boiman O, Shechtman E, Irani M. In defense of nearest-neighbor based image classification [C] //26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Piscataway: IEEE, 2008.
  • 3Jurie F, Triggs B. Creating efficient codebooks for visual recognition [C] // 10th IEEE International Conference on Computer Vision, 2005. ICCV 2005 (Volume: D. Piscataway: IEEE, 2005 : 604-610.
  • 4Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [C] // Proceedings-2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006. New York: IEEE Computer Society, 2006 : 2169-2178.
  • 5Bosch A, Zisserman A, Mufioz X. Image classification using random forests and ferns [C] // 2007 IEEE llth International Conference on Computer Vision, ICCV. Piscataway:IEEE, 2007.
  • 6Maji S, Berg A C, Maliks J. Classification using intersection kernel support vector machine is efficient [C] // 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Piscataway: IEEE, 2008.
  • 7YANG Jian-chao, YU Kai, GONG Yi-hong, et al. Linear spatial pyramid matching using sparse coding for image classification [C] //2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. Piscataway:IEEE, 2009:1794-1801.
  • 8GAO Sheng-hua, Tsang I, Chia L, et al. Local features are not lonely Laplacian sparse coding for image classification [C]//2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Piscataway: IEEE, 2010:3555-3561.
  • 9Kavukcuoglu K, Ranzato M, Fergus R, et al. Learning invariant features through topographic filter maps [C] // 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. Piscataway:IEEE, 2009 : 1605-1612.
  • 10Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration [C] //2009 IEEE 12th International Conference on Computer Vision.Piscataway: IEEE, 2009 : 2272-2279.

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部