期刊文献+

基于高斯混合模型林火“烟雾根”的识别

Identification of forest fire smoke root based on gaussian mixture model
原文传递
导出
摘要 "烟雾根"作为林火烟雾的固有属性是区分烟雾和类烟雾的重要特征,"烟雾根"的准确检测和提取对森林火灾烟雾的识别具有重要意义。为此提出了基于高斯混合模型林火"烟雾根"识别方法,首先,采用高斯混合模型GMM对林火烟雾动态区域进行前景提取,将前景区域用形态学处理为连通的区域图像;其次,采用连通区域的骨架图像,生成烟雾根节点坐标信息;最后,从骨架端点提取与融合得到烟雾根候选点。本文提出的采用高斯混合模型进行前景提取,进行"烟雾根"识别的方法,比背景差分、帧差法和vibe等动态区域提取算法具有更好的鲁棒性。 As an inherent attribute of forest fire smoke,"smoke root"is an important feature to distinguish smoke from smoke-like smoke.The accurate detection and extraction of‘smoke root’is of great significance to the identification of forest fire smoke.The paper states the fire smoke"root"recognition method based on gaussian mixture model at the first,GMM prospect of fire smoke dynamic regions are extracted by using the gaussian mixture model,and the prospect area by using morphological image processing is connected area,secondly,by using skeleton connected regions of the image,generated smoke root node coordinate information,and finally,got the candidate smoke from the skeleton endpoints root extraction and fusion.In this paper,gaussian mixture model is used for foreground extraction and"smoke root"identification,which is more robust than that of background difference,frame difference and vibe.
作者 郑鑫 高宇 陈锋 程朋乐 ZHENG Xin;GAO Yu;CHEN Feng;CHENG Peng-le(Beijing Forestry University,Beijing 100083,China)
机构地区 北京林业大学
出处 《林业和草原机械》 2020年第1期44-46,43,共4页 Forestry and Grassland Machinery
基金 国家自然科学基金青年基金:云南松树冠火发生的关键机制研究(31800549)。
关键词 烟雾根 GMM 骨架图像 骨架端点融合 smoke root GMM skeleton image skeleton endpoint fusion
作者简介 郑鑫(1995-),男,硕士研究生;通讯作者:程朋乐(1980-),男,副教授,主要从事森林火灾监测研究。
  • 相关文献

参考文献1

二级参考文献12

  • 1Karlikowski T. Forest fire detection systems [J]. Forestry Sciences, 1982, 7: 85-91.
  • 2Jadhav P S, Deshmukh V U. Forest fire monitoring system based on Zig-Bee wireless sensor network [J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(12) : 187 - 191.
  • 3Fleming J, Robertson R G. Fire Management Teeh Tips: The Osborne Fire Finder, Technical Report 0351 1311- SDTDC [R]. Washington DC, USA: USDA Forest Service, 2003.
  • 4Kim D K, Wang Y F. Smoke detection in video [C]// 2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, California, USA: IEEE, 2009: 759-763.
  • 5Merino L, Caballero F, Martinez-de-Dios J R, et al. An unmanned aircraft system for automatic forest fire monitoring and measurement [J]. Journal of Intelligent & Robotic Systems, 2012, 65(1 4) : 533 - 548.
  • 6Giglio L, Descloitres , Justice C O, et al. An enhanced contextual fire detection algorithm for MODIS [J]. Remote Sensing of Environment, 2003, 87(2) : 273 - 282.
  • 7Cui Y, Dong H, Zhou E. An early fire detection method based on smoke texture analysis and discrimination [C]// CISP 2008. Sanya, China: IEEE, 2008:95-99.
  • 8Yoon S H. An intelligent automatic early detection system of forest fire smoke signatures using Gaussian mixture model [J]. Journal of Information Processing Systems, 2013, 9(4) : 621 - 632.
  • 9Kolesov I, Karasev P, Tannenbaum A, et al. Fire and smoke detection in video with optimal mass transport based optical flow and neural networks [C]// 2010 17th IEEE International Conference on Image Processing (ICIP). Hongkong, China: IEEE, 2010: 761- 764.
  • 10Ko B C, Cheong K H, Nam J Y. Fire detection based on vision sensor and support vector machines [J]. Fire Safety Journal, 2009, 44(3) = 322 - 329.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部