期刊文献+

基于MTCNN的多特征融合学生疲劳检测 被引量:4

Multi-feature fusion student fatigue detection based on MTCNN
在线阅读 下载PDF
导出
摘要 随着升学竞争越来越大,学生负担也越来越重,为了提高教学质量和升学率,需要对课堂上学生状态进行判断,找出处于疲劳状态的学生。然而,这些方法不能同时保证检测的准确性和速度。因此,文中提出了一种基于多特征融合的疲劳检测方法。首先,利用MTCNN改进了基于MedianFlow的人脸跟踪算法。然后提出了一种新的基于CNN的人脸关键点检测模型,利用人脸关键点检测的结果对眼睛进行定位。最后,通过融合闭眼时间、眨眼频率和头部位置等信息来实现学生疲劳的检测。实验结果表明,文中的疲劳检测方法在速度和精度上都有很好的效果。 With the increasing competition for higher education,the burden of students is getting heavier.In order to improve the quality of teaching and the rate of higher education,it is necessary to judge the status of students in the classroom and find out students who are in a state of fatigue.However,these methods cannot guarantee both accuracy and speed of detection.Therefore,this paper proposes a fatigue detection method based on multi-feature fusion.Firstly,the face tracking algorithm based on MedianFlow is improved by using MTCNN.Then a new CNN-based facial key points detection model is proposed,which uses the results of facial key points detection to locate the eyes.Finally,the student’s fatigue is detected by fusing information such as closed eye time,blink frequency and head position.The experimental results show that the fatigue detection method proposed in this paper has a good effect on speed and accuracy.
作者 李芙蓉 LI Fu-rong(Shaanxi Vocational&Technical College,Xi’an 710038,China)
出处 《信息技术》 2020年第6期108-113,120,共7页 Information Technology
关键词 人脸追踪 人脸关键点检测 眼睛位置 疲劳检测 face tracking face key points detection eye location fatigue detection
作者简介 李芙蓉(1990-),女,硕士,研究方向为信息化建设。
  • 相关文献

参考文献5

二级参考文献22

共引文献8

同被引文献18

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部