期刊文献+

基于贝叶斯优化的心脏病诊断模型 被引量:2

Heart Disease Diagnosis Model Based on Bayesian Optimization
在线阅读 下载PDF
导出
摘要 随着机器学习方法的日趋流行,人们可以用很多开源工具来实现各种模型的构建.模型性能要好,参数调优是关键.提出应用贝叶斯优化算法对随机森林分类模型进行参数寻优,最后用心脏病数据集进行了实证分析.结果表明:与随机搜索方法相比,贝叶斯优化搜索的模型更优. With the increasing popularity of machine learning methods,people can use many open source tools to build various models.For models with high performance,parameter tuning is the key.In this paper,Bayesian optimization algorithm is proposed to optimize the parameters of the random forest classification model.Finally,an empirical analysis is carried out with the heart disease data set.The results show that the Bayesian optimization model is better than the random search method.
作者 杜一平 DU Yi-Ping(Department of Mathematics,Luliang University,Lishi Shanxi 033001,China)
机构地区 吕梁学院数学系
出处 《吕梁学院学报》 2020年第2期31-33,共3页 Journal of Lyuiang University
基金 山西省青年科技研究基金资助项目(201901D211449) 吕梁学院优质课程建设项目(YZKC201828).
关键词 贝叶斯优化 随机森林算法 心脏病诊断 Bayesian optimization random forest algorithm heart disease diagnosis
作者简介 杜一平(1982-),男,山西岚县人,讲师,研究方向为统计学、数据挖掘.
  • 相关文献

参考文献5

二级参考文献32

  • 1范子雄,向平,赵文娟,刘军.支持向量机在心脏病诊断中的应用[J].科学技术与工程,2006,6(1):56-57. 被引量:3
  • 2Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 3Ho T.The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844.
  • 4Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 5Zhang H,Wang M.Search for the smallest random forest[J].Statistics and ITS Interface,2009,2(3).
  • 6Díaz-Uriarte R,De Andres S A.Gene selection and classification of microarray data using random forest[J].BMC Bioinformatics,2006,7(1).
  • 7Svetnik V,Liaw A,Tong C,et al.Random forest:a classification and regression tool for compound classification and QSAR modeling[J].Journal of Chemical Information and Computer Sciences,2003,43(6):1947-1958.
  • 8Oshiro T M,Perez P S,Baranauskas J A.How many trees in a random forest[M]//Machine learning and data mining in pattern recognition.Berlin Heidelberg:Springer,2012:154-168.
  • 9Kulkarni V Y,Sinha P K.Pruning of random forest classifiers:a survey and future directions[C]//2012 International Conference on Data Science&Engineering(ICDSE),2012:64-68.
  • 10Dietterich T G.Approximate statistical tests for comparing supervised classification learning algorithms[J].Neural Computation,1998,10(7):1895-1923.

共引文献295

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部