期刊文献+

考虑偏差补偿PSO-BP模型的SCR入口NOx软测量 被引量:2

Soft Sensor of NOx at SCR Entrance Considering Deviation Compensation PSO-BP Model
在线阅读 下载PDF
导出
摘要 针对燃煤电厂SCR入口氮氧化物(NOx)烟气连续监测系统存在较大延时性和维护过程无法连续测量的问题,提出一种考虑偏差补偿基于改进型PSO优化的BP神经网络软测量模型.首先,利用改进的PSO算法对网络参数进行优化,解决各神经元阀值与权值初始选择随机性强和训练过程易陷入局部极值的问题,从而提升网络的训练速度和精度;其次,构建模型误差补偿网络修正预测结果以提高网络的预测精度与泛化能力;然后将改进模型应用于SCR入口NOx软测量,基于某电厂DCS运行数据仿真计算,并与BP模型、标准PSO优化的BP模型和改进型PSO优化的BP模型进行了对比.仿真实验表明提出的软测量模型具有更高的收敛速度、更强的泛化能力、更佳的测量精度. Aiming at the problem of large time delay and discontinuity of measurement within in the process of maintenance in the SCR inlet nitrogen oxides(NOx)flue gas continuous monitoring system of coal-fired power plants,a soft-sensing model of BP neural network based on improved PSO optimization considering deviation compensation is proposed.First,network parameters is optimized by the improved PSO algorithm to solve the problem that the initial selection of the threshold and weight of each neuron is strong and the training process is easy to fall into local extremes,so that the training speed and accuracy of the network is improved.Secondly,a model error compensation network is constructed to correct the prediction results and improve the prediction accuracy and generalization ability of the network,the improved model is then applied to the SCR inlet NOx soft sensor.Simulation calculation is established based on DCS operating data of a power plant,then compared with BP model,standard PSO optimized BP model and improved PSO optimized BP model.The simulation experiments show that the proposed soft-sensor model has higher convergence speed,stronger generalization ability,and better measurement accuracy.
作者 李忠鹏 姜子运 LI Zhong-peng;JIANG Zi-yun(School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《兰州交通大学学报》 CAS 2020年第2期58-63,共6页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(51767013) 甘肃省教育厅基金(2017A-020)。
关键词 软测量 改进型PSO 偏差补偿网络 BP神经网络 SCR入口NO_x浓度 soft sensor improved PSO deviation compensation network BP neural network SCR inlet NO_x concentration
作者简介 第一作者:李忠鹏(1991-),男,甘肃白银人,硕士研究生,主要研究方向为检测技术与自动化装置.E-mail:lzprocfly@foxmail.com.通信作者:姜子运(1981-),男,安徽六安人,副教授,工学博士,主要研究方向为过程控制系统建模与设计.E-mail:jiangziyun@mail.lzjtu.cn.
  • 相关文献

参考文献15

二级参考文献150

  • 1王春昌,陈国辉.SOFA对炉膛出口烟气温度的影响研究[J].热力发电,2013,42(10):78-82. 被引量:8
  • 2孙道恒,胡俏,徐灏.力学反问题的神经网络分析法[J].计算结构力学及其应用,1996,13(3):308-312. 被引量:21
  • 3张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2012.
  • 4冯杏仪.PM2.5的污染源分析与控制[J].能源环境,2013,8(1):23-24.
  • 5Li Rui.A particle swarm optimized fuzzy neural network for bankruptcy prediction[C]//International Conference on Future Information Technology and Management Engineering.Piscataway,USA:IEEE Service Center,2010:227-560.
  • 6Mohammad Sadegh Norouzzadeh,Mohammad Reza Ahmadazadeh,Maziar Palhang.LADPSO:Using fuzzy logic to conduct PSO algorithm[J].Appl Intell,2012 (37):290-304.
  • 7Luis A Diaz-Robles,Juan C Ortega,Joshua S Fu,et al.A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas:The case of Temuco,Chile[J].Atmospheric Environment,2008 (42):8331-8340.
  • 8西安市气象局.西安市空气质量日报[DB/OL.2013-11-13].http://www.xianemc.gov.cn/sxmpcp _ qt.asp? lb =%D6% CA% C1% BF% C8% D5% B1% A8?me=1&whichpage=1&pagesize =30.
  • 9McKeen S,Chung SH,Wilczak J,et al.Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study[J].Journal of Geophysical Research:Atmospheres (1984-2012),2007,112 (D10).
  • 10Ian G McKendry.Evaluation of artificial neural networks for fine particulate pollution (PM2.5 and PM10) forecasting[J].Journal of the Air & Waste Management Association,2011 (52):1096-1101.

共引文献306

同被引文献25

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部