期刊文献+

超临界锅炉烟气脱硝喷氨量混结构–径向基函数神经网络最优控制 被引量:62

Mixed Structure-radial Basis Function Neural Network Optimal Control on Spraying Ammonia Flow for Supercritical Boiler Flue Gas Denitrification
在线阅读 下载PDF
导出
摘要 喷氨量大小不仅影响超临界锅炉选择性催化还原(selective catalytic reduction,SCR)烟气脱硝装置的效率,过量喷氨也会导致下游空预器受热面的积灰、腐蚀和造成资源浪费、二次污染,且在变负荷时,传统PID控制方式很难实现最佳控制。通过引入混结构隐含层,改善传统RBF神经网络变工况控制时的非线性和扰动适应能力,设计了基于混结构RBF神经网络(MS-RBFNN)的喷氨流量最优控制系统,用MS-RBFNN综合学习当前主要相关状态参数,以SCR脱硝装置出口NOx排放量最小作为学习训练信号,实时并行计算出最优喷氨控制流量。实验结果表明,此优化方案相对传统PID控制,具有更好的NOx排放控制效果和变工况适应能力,同时节约了喷氨量。 Spraying ammonia flow can influence the efficiency of supercritical boiler's flue gas denitrification device based on selective catalytic reduction (SCR). Excessive spraying flow can also result in ash deposit and corruption of backward heating units such as air heater, simultaneously, it causes resource waste and second pollution. Moreover, optimal traditional PID control with variational load on the flow is difficult. And in order to improve traditional radial basis function (RBF) neural network (RBFNN)'s adaptivities of nonlinearity and disturbance during variational working condition, so, a new control scheme based on mixed structure RBFNN (MS-RBFNN) was proposed. This MS-RBFNN can synthetically study current main relative state parameters, so as to parallel calculate the optimal spraying ammonia flow by using least NOx discharge of SCR device as its training signal. Experimental results indicate, comparing with traditional PID control, this scheme's advantages on better NOx control effect and adaptability of variable working condition as well as little ammonia usage.
出处 《中国电机工程学报》 EI CSCD 北大核心 2011年第5期108-113,共6页 Proceedings of the CSEE
关键词 选择性催化还原 径向基函数神经网络 混结构 最优控制 烟气脱硝 超临界锅炉 selective catalytic reduction (SCR) radial basis function (RBF) neural network mixed structure optimal control flue gas denitrification supercritical boiler
作者简介 周洪煜(1954),男,博士,硕士生导师,研究方向为电站控制系统、节能减排和智能控制理论,quzhy@cqu.edu.cn. 张振华(1979),男,硕士研究生,研究方向为电站DCS控制系统优化和智能控制应用; 张军(1971),男,硕士,高级工程师,研究方向为清洁发电技术和神经网络控制。
  • 相关文献

参考文献24

二级参考文献109

共引文献311

同被引文献521

引证文献62

二级引证文献473

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部