期刊文献+

基于全局和局部特征的人体行为识别 被引量:8

Human Action Recognition Based on Global and Local Features
原文传递
导出
摘要 为克服方向梯度直方图(HOG)特征在人体行为识别中仅表征动作的全局梯度特征、缺乏局部细节信息、对遮挡表现不佳的问题,改进了一种基于全局特征和局部特征的方法来实现人体行为识别。该算法首先使用背景减法获得人体运动区域;方向可控滤波器能有效描述动作边缘特征,通过引入方向可控滤波器改进HOG特征以增强局部边缘信息,同时对加速稳健特征进行k-means聚类获得词袋模型;最后将融合后的行为特征输入支持向量机对行为特征进行分类识别。在数据集KTH、UCF Sports和SBU Kinect Interaction上进行仿真模拟,结果表明改进的算法识别准确率分别达到了96.7%、94.2%和90.8%。 This paper improves a global and local feature-based method to overcome problems of the histogram of oriented gradients(HOG),such as the features only characterizing the global gradient feature of motion,lacking local detail information,and having poor performance on occlusion,in the human behavior recognition.The proposed algorithm first uses the background difference method to obtain the human motion region;then,a steerable filter can effectively describe the motion edge features to improve HOG features,therefore enhancing edge details.At the same time,k-means clustering is conducted on speeded up robust features(SURF)to obtain the bagof-words model.Finally,the merged behavior features are input into a support vector machine(SVM)for classification and recognition.Simulation experiments perform on the KTH,UCF Sports,and SBU Kinect Interaction datasets,showing improved algorithm recognition accuracies of 96.7%,94.2%,and 90.8%,respectively.
作者 刘帆 于凤芹 Liu Fan;Yu Fengqin(School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第2期75-81,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61573168) 中央高校基本科研业务费专项资金(JUSRP51733B)。
关键词 图像处理 人体行为识别 加速稳健特征 方向梯度直方图 词袋模型 支持向量机 image processing human action recognition speeded up robust features histogram of oriented gradients bag-of-words model support vector machine
作者简介 刘帆,E-mail:977216218@qq.com。
  • 相关文献

参考文献9

二级参考文献91

  • 1王阳,穆国旺,睢佰龙.基于HOG特征和SVM的人脸表情识别[J].河北工业大学学报,2013,42(6):39-42. 被引量:7
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:80
  • 4侯叶,郭宝龙.基于图切割的人体运动检测[J].光电子.激光,2007,18(6):725-728. 被引量:11
  • 5Chen H-S,Chen H-T,Chen Y-W. Human action recognition using star skeleton[A].New York:acm Press,2006.171-178.
  • 6Quattoni A,Wang S,Morency LP. Hidden conditional random fields[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(10):1848-1852.doi:10.1109/TPAMI.2007.1124.
  • 7Lafferty J,McCallum A,Pereira F. A conditional random fields:Probabilistic models for segmenting and labeling sequence data[A].United States of America,2001.282-289.
  • 8Sminchisescu C,Kanaujia A,Li Z. Conditional models for contextual human motion recognition[J].Journal of Computer Vision and Image Understanding,2006,(2/3):1808-1815.
  • 9Wang S B,Quattoni A,Morency L P. Hidden conditional random fields for gesture recognition[A].New York:IEEE Computer Society,2006.1521-1527.
  • 10Gorelick L,Blank M,Shechtman E. Action as space-time shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(12):2247-2253.

共引文献112

同被引文献70

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部