期刊文献+

基于XG-B00ST和多数据源的药物重定位预测 被引量:2

Drug Reposition Prediction Based on XG-BOOST and Multi-source Data
在线阅读 下载PDF
导出
摘要 新药物研发时间长、成本高,但成功率低,为了提高收益比,药物重定位即旧药新用受到了广泛关注。从临床和实验角度鉴定药物的新用途需要耗费大量人力和物力,从计算角度预测药物新用途成为研究热点;并且,随着药物和疾病相关的大量多层次组学数据积累,通过挖掘药物相关数据鉴定药物新用途成为可能。重点挖掘药物化学结构、药理性质、药物靶蛋白功能、疾病表型等数据得到相应特征,并将这些药物疾病特征进行整合,再将特征输入XG-BOOST模型进行预测。实验结果表明,该方法准确率达87.9%,较逻辑回归、随机森林具有更高的预测精度。 The development of new drugs is long and costly,but the success rate is low.Therefore,in order to improve the yield,drug relocation,that is,the new use of old drugs has received extensive attention.The clinical and experimental identification of new uses of drugs requires a lot of manpower and material resources,and predicting the new use of drugs from a computational perspective has become a research hotspot in recent years.On the other hand,in recent years,the rapid accumulation of a large number of multi-level omics data related to drug-related and disease has made it possible to identify new drug uses by mining drug-related data.In this paper,the characteristics of the chemical structure,pharmacological properties,drug target protein function,disease phenotype,etc.of the drug were obtained,and the characteristics of these drugs were integrated.Finally,the feature is input into the XG-BOOST model for prediction.The experimental results show that our method has higher prediction accuracy than logistic regression and random forest.
作者 李苗苗 LI Miao-miao(Business School,University of Shanghai for Science and Technology,Shanghai 200090,China)
出处 《软件导刊》 2020年第2期110-113,共4页 Software Guide
关键词 药物重定位 XG-BOOST模型 预测精度 drug reposition XG-BOOST model prediction accuracy
作者简介 李苗苗(1995-),女,上海理工大学管理学院硕士研究生,研究方向为系统生物学。
  • 相关文献

参考文献3

二级参考文献62

  • 1李梢.基于生物网络调控的方剂研究模式与实践[J].中西医结合学报,2007,5(5):489-493. 被引量:94
  • 2Reichert JM. Trends in development and approval times for new therapeutics in the United States [ J ]. Nat Rev Drug Discov, 2003, 2(9) :695-702.
  • 3Gottleib S. Part I1 -drug shortages: Big pharmas new business model[J]. Mo Med, 2012, 109(2) :100-101.
  • 4Ashburn TY, Thor KB. Drug repositioning: identifying and devel- oping new uses for existing drugs [ J ]. Nat Rev Drug Discov, 2004, 3(8) :673-683.
  • 5Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization[ J]. Nat Rev Genet, 2004, 5 (2) : 101-113.
  • 6Biopharmacetuicals. in perspective[EB/OL] [2012-03-07]http:// www. pharma, org/track - pdf. php? q =/sites/default/files/159/ pharma_chart_pack, pdf.
  • 7Bader S, Kuhner S, Gavin AC. Interaction networks for systems biology[ J]. FEBS Lett, 2008, 582 (8) : 1220-1224.
  • 8Swamidass SJ. Mining small-molecule screens to repurpose drugs [J]. BriefBioinform, 2011, 12(4):327-335.
  • 9Hopkins AL. Network pharmacology[ J]. Nat Biotechnol, 2007, 25(10) :1110-1111.
  • 10Hopkins AL. Network pharmacology: the next paradigm in drug discovery[ J]. Nat Chem Biol, 2008, 4( 11 ) :682-690.

共引文献57

同被引文献7

引证文献2

二级引证文献1

  • 1孔建强,《生物工程学报》编委.导读[J].生物工程学报,2024,40(7).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部