期刊文献+

改进机器学习算法在网络数据安全风险预测中的应用 被引量:7

Application of Improved Machine Learning Algorithm in Network Data Security Risk Prediction
在线阅读 下载PDF
导出
摘要 为了提高网络的数据安全传输性能,需要进行网络数据安全风险预测,提出一种基于改进机器学习算法的网络数据安全风险预测算法.构建网络的数据传输信道分布模型,提取网络传输码元比特流的安全风险数据统计特征量,根据风险统计分布特征提取结果进行融合聚类处理,构建网络数据安全风险预测的量化回归分析模型,结合关联特征挖掘方法进行网络数据的安全风险指向性预测,采用机器学习算法进行网络安全风险预测中的收敛性控制,实现网络数据安全风险预测.仿真结果表明,采用该方法进行网络数据安全风险预测的准确性较高,对入侵信息的检测能力较强,提高了网络安全性. A network data security risk prediction algorithm based on improved machine learning algorithm is proposed.The data transmission channel distribution model of network was constructed,and the statistical characteristics of the security risk data of the transmission symbol bit stream of network were extracted.The fusion clustering processing was carried out according to the risk statistical distribution feature extraction.The quantitative regression analysis model of network data security risk prediction was constructed,and the security risk directivity prediction of network data was carried out by combining the association feature mining method.The convergence control of network security risk prediction was carried out by using a machine learning algorithm,and the network data security risk prediction was realized.The simulation results show that the proposed method is accurate in predicting the network data security risks and has a strong ability to detect intrusion information,thus improving network security.
作者 韩高峰 钟元权 HAN Gao-feng;ZHONG Yuan-quan(School of Computer Engineering,Anhui Wenda University of Information Engineering,Hefei 230000,China)
出处 《内蒙古民族大学学报(自然科学版)》 2020年第1期30-35,共6页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 安徽省级重点教研项目(2018jyxm1394)
关键词 进机器学习 网络数据 安全风险预测 挖掘 Advanced machine learning Network data Security risk prediction Mining
作者简介 韩高峰,安徽文达信息工程学院计算机工程学院讲师,硕士.
  • 相关文献

参考文献9

二级参考文献50

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:235
  • 2闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:57
  • 3单超,王娜,王萍,张邦宁.OFDM系统的抗干扰性能研究[J].系统仿真学报,2006,18(6):1618-1622. 被引量:10
  • 4毕小龙,王洪跃,司风琪,徐治皋.基于趋势提取的稳态检测方法[J].动力工程,2006,26(4):503-506. 被引量:17
  • 5任天鹏,张尔扬.OFDM解调器在若干干扰样式下的性能分析[J].电子信息对抗技术,2006,21(6):31-33. 被引量:4
  • 6Zhu ZhiBo,Song ZhiHuan. Fault Diagnosis Based on Imbal-ance Modified Kernel Fisher Discriminant Analysis [ J ].Chemical Engineering Research and Design, 2010, 88 (8):936-951.
  • 7Tavallaee M,Stakhanova N,Ghorbani A A. Toward CredibleEvaluation of Anomaly-Based Intrusion-Detection Methods[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part C: Applications and Reviews, 2010 ,40(5): 516-524.
  • 8Mazurowski M A,Habas P A, Zurada J M, et al. TrainingNeural Network Classifiers for Medical Decision Making:The Effects of Imbalanced Datasets on Classification Per-formance[J]. Neural Networks,2008,21(2-3) :427-436.
  • 9Kubat M, Holte R C, Matwin S. Machine Learning for theDetection of Oil Spills in Satellite Radar Images[J]. MachineLearning, 1998, 30(2-3):195-215.
  • 10Weiss G M. Mining with Rarity: A Unifying Framework[J].Newsletter of the ACM Special Interest Group on KnowledgeDiscovery and Data Mining, 2004,6(1) :7-19.

共引文献187

同被引文献43

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部