期刊文献+

深层页岩裂缝形态影响因素 被引量:22

Influencing factors of fracture geometry in deep shale gas wells
在线阅读 下载PDF
导出
摘要 我国深层页岩气资源量丰富,但深井压裂施工压力高、加砂难度大、压后效果不理想,如何利用水力压裂措施形成有效的裂缝系统仍是亟待解决的难题。鉴于此,基于室内实验及微地震监测数据,应用Meyer软件离散裂缝网络模型模拟川东南某深层页岩气区块裂缝扩展规律(模拟精度可达85%以上)。通过正交设计及方差分析明确了压裂液黏度是影响深层页岩压裂裂缝形态中缝宽和SRV的主控因素,并将裂缝扩展分为前1/5~1/4时间段内的快速生成期和之后的缓慢增长期2个阶段。提出了目标区块深层页岩气井"大排量适度规模现场精细调控、变黏度混合压裂液充分造缝、小粒径低砂比连续加砂有效支撑"的技术思路,确定了单井液量、砂量、排量等最优参数范围。指导了一口3900m深水平井的压裂施工,综合砂液比为3.51%,单段最高砂量为80.6m^3,压后获得了11.4万m^3的测试产量。该研究为类似深层页岩气井压裂设计提供了依据。 There are abundant deep shale gas resources in China. For deep shale gas wells,the casing pressure is usually very high and it is difficult to pump proppants during hydraulic fracturing treatment,however,the production is low as well. How to generate effective fracture system remains an urgent and unresolved issue in deep shale gas wells. Thus,based on lab experiments together with microseismic monitoring data,a fracture propagation model was established using discrete fracture network model of Meyer,especially for deep shale gas wells in southeast Sichuan Basin,and the simulation accuracy is above 85%. Through orthogonal design and variance analysis,it is defined that fracturing fluid viscosity is the main controlling factor affecting fracture geometry especially for fracture width and SRV in deep shale gas wells,and there are two stages for the fracture propagation progress:the rapid growth stage in the early 1/5-1/4 pump time,and the following moderate growth stage. The fracturing design principle was put forward for the target block:fine field control with larger fluid displacement and moderate operation scale,hybrid hydraulic fluid with various viscosity to achieve fully fracture propagation, and continuous smaller proppant loading mode with lower concentration to prop fracture effectively. The fracturing parameters were optimized such as fracturing fluid volume,proppant volume and fluid displacement. A sample horizontal well buried more than 3 900 m was fractured with comprehensive sand-liquid ratio up to 3.51% and maximum sand volume per stage up to 80.6 m3,and the testing production was 11.4×10^4 m^3. The research could provide fracturing references for similar horizontal wells in deep shale gas play.
作者 卞晓冰 侯磊 蒋廷学 高东伟 张驰 BIAN Xiaobing;HOU Lei;JIANG Tingxue;GAO Dongwei;ZHANG Chi(State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development,Beijing 100101,China;Sinopec Research Institute of Petroleum Engineering,Beijing 100101,China;Chongqing Fuling Shale GasExploration and Development Company,Sinopec,Chongqing 408014,China)
出处 《岩性油气藏》 CSCD 北大核心 2019年第6期161-168,共8页 Lithologic Reservoirs
基金 国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(编号:2016ZX05061) 中国石化科技攻关项目“深层页岩气多尺度裂缝压裂技术”(编号:P17014-6)联合资助
关键词 深层页岩 数值模拟 裂缝形态 SRV 主控因素 deep shale numerical simulation fracture geometry SRV main controlling factors
作者简介 卞晓冰(1985-),男,博士,副研究员,主要从事水力压裂优化设计及数值模拟方面的研究工作。地址:(100101)北京市朝阳区北辰东路8号北辰时代大厦612。Email:xiaobingbian@126.com.
  • 相关文献

参考文献10

二级参考文献161

  • 1胡文瑞.中国非常规天然气资源开发与利用[J].大庆石油学院学报,2010,34(5):9-16. 被引量:45
  • 2赵军,蒲万丽,王贵文,李军.测井信息在前陆挤压区地应力分析中的应用[J].地质力学学报,2005,11(1):53-59. 被引量:7
  • 3常象春,王明镇.鄂尔多斯盆地上古生界非常规含气系统[J].天然气地球科学,2005,16(6):732-735. 被引量:12
  • 4British Petroleum Company.BP statistical review of world energy2011[R].London:British Petroleum Company,2011.
  • 5国家能源局.致密砂岩气地质评价方法[S].北京:石油工业出版社,2011.
  • 6肖钢,唐颖.页岩气及其勘探开发[M].北京:高等教育出版社,2012.
  • 7朱伟林,王志欣,宫少波,等.俄罗斯含油气盆地[M].北京:科学出版社,2012.
  • 8Levorsen A I. Geology of petroleum[M]. San Francisico: W.H. Freeman and Company, 1956: 1-80.
  • 9Schmoker J W. Resource-assessing perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-2000.
  • 10Hubbert M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026.

共引文献1826

同被引文献333

引证文献22

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部