期刊文献+

基于大数据的未到达货票清算预测平台研究 被引量:2

Liquidation prediction platform for un-arrived freight invoice based on big data
在线阅读 下载PDF
导出
摘要 为解决未到达货票承运制清算的预测问题,研究了基于k近邻算法(k-NN ,k-Nearest Neighbor)模型的预测算法,应用Hadoop技术,构建了基于大数据的未到达货票清算预测平台。实践表明,该平台可使业务部门及时掌握全路货运营运情况,同时明晰货运承运企业间的经营业绩,是铁路货物运输承运制清算系统的重要组成部分。 In order to solve the problem of liquidation prediction of un-arrived freight invoice carrier system, the forecasting algorithm based on the k-Nearest Neighbor(k-NN) algorithm model was studied. Hadoop technology was applied to construct a liquidation prediction platform for un-arrived freight invoice based on big data. The practice shows that the platform can make the service department master the freight operation situation of the whole railway in time, and clarify the service performance among freight carrier enterprises. It is an important part of the railway freight transportation carrier system liquidation.
作者 谢大锋 安腾 霍鹏敏 XIE Dafeng;AN Teng;HUO Pengmin(Beijing Jingwei Information Technologies Co. Ltd., Beijing 100081, China)
出处 《铁路计算机应用》 2019年第10期35-38,共4页 Railway Computer Application
基金 中国铁路总公司科技研究开发计划项目(2017Z002-B)
关键词 货运承运制清算 K近邻算法 大数据 freight transportation carrier system liquidation K nearest neighbor algorithm big data
作者简介 谢大锋,工程师;安腾,助理工程师。
  • 相关文献

参考文献4

二级参考文献13

共引文献168

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部