期刊文献+

基于MSVD和MPCNN模型的多模态医学图像融合算法研究 被引量:3

The Algorithm Research of Multimodal Medical Image Fusion Based on Multi-resolution Singular Value Decomposition and Modified Pulse Coupled Neural Network
在线阅读 下载PDF
导出
摘要 目的:提出一种联合脉冲耦合神经网络改进模型(modified pulse coupled neural network,MPCNN)和多分辨奇异值分解(multi-resolution singular value decomposition,MSVD)的多模态医学图像融合算法。方法:第一步,采用MSVD将已配准的MRI和CT图像分解成高频和低频子图像;第二步,采用基于自适应连接因子的MPCNN方法融合低频系数,高频系数采用绝对值取大进行融合,最大限度保存图像细节信息;第三步,采用MSVD逆变换重建融合图像。结果:8组CT和MRI图像融合实验表明,基于提出算法获得的融合图像对比度、清晰度和边缘强度均最佳,且定量评价指标标准差、熵、互信息和边缘强度均高于其他融合算法。结论:提出的MPCNN算法能有效克服传统PCNN算法的局限性,与MSVD结合后融合性能优越,具有较高普适性和实用性,是一种可行的CT和MRI图像融合算法。 Objective: We proposed a novel multimodal medical images fusion method based on multi-resolution singular value decomposition(MSVD) and modified pulse coupled neural network(MPCNN). Methods: Firstly, the input pre-registered MRI and CT images are decomposed into high frequency(HF) and low frequency(LF) sub-bands by the MSVD transform. Then, the MPCNN model is applied adaptively to determine the linking strength. After that, LF coefficients are combined based on the output of MPCNN coefficients while HF coefficients are fused by the maximum selection rule. Finally, the inverse MSVD is applied to reconstruct the fused image. Results: Eight groups of multimodal MRI and CT images were used in simulation experiments. Visual analysis showed that the fused images of proposed method had better contrast, definition and edge intensity. Quantitative assessment showed that the standard deviation, entropy, mutual information and QAB/F in proposed method were superior to other methods in all groups. Conclusion: The MPCNN can overcome limits of conventional PCNN, when it combined with MSVD, the proposed method showed better robustness, superiority and become a feasible CT and MRI image fusion algorithm.
作者 宋方奔 缪正飞 张子齐 SONG Fang-ben;MIAO Zheng-fei;ZHANG Zi-qi(Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, P.R.C.)
出处 《中国数字医学》 2019年第7期9-12,共4页 China Digital Medicine
关键词 脉冲耦合神经网络 多分辨奇异值分解 多模态 医学图像融合 pulse coupled neural network multi-resolution singular value decomposition multimodal medical image fusion
作者简介 通信作者:张子齐,南京医科大学附属南京医院(南京市第一医院)放射科,210006,江苏省南京市秦淮区长乐路68号.
  • 相关文献

参考文献12

二级参考文献95

  • 1王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合方法[J].中国图象图形学报,2008,13(1):145-150. 被引量:22
  • 2王昕,李玮琳,刘富.小波域CT/MRI医学图像融合新方法[J].吉林大学学报(工学版),2013,43(S1):25-28. 被引量:13
  • 3陈逢时.子波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1999.17-39.
  • 4吴崇明等编著.基于MATLAB的系统分析与设计--小波变换.西安:西安电子科技大学出版社,2000.
  • 5Dony R D,Haykin S.Neural Networks Approaches to Image Compression.Proceeding of The IEEE,Vol.83,No.2,Feb.1995.
  • 6Bedi SS, Khandelwal R. Comprehensive and comparative study of image fusion techniques[J]. Int J Soft Computing and Engineering, 2013,37 ( 1 ): 4242-4248.
  • 7Pradhan PS, King RL, Younan NH, et al. Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion[J]. IEEE Trans Geosci Remote Sens, 2006,44 (12): 3674-3686.
  • 8Singh R, Srivastava R,Prakash O, et al. Multimodal medi- cal image fusion in dual tree complex wavelet transform domain using maximum and average fusion rules [J]. J Med Imag Health In,2012,2(2):168 173.
  • 9Yang Y,Park DS, Huang S,et al. Fusion of CT and MR images using an improved wavelet based method[J]. J X- Ray Sci Technol, 2010,18(2): 157-170.
  • 10Singh R, Khare A. Multiscale medical image fusion in wavelet domain [J]. Scientific World J, 2013 ( 2013 ): 521034.

共引文献72

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部