期刊文献+

结合自注意力机制和Tree-LSTM的情感分析模型 被引量:22

Sentiment Analysis Model with the Combination of Self-attention and Tree-LSTM
在线阅读 下载PDF
导出
摘要 情感分析随着人工智能的发展而逐渐受到重视,微博情感分析旨在研究用户对于社会热点事件的情感倾向,研究表明深度学习在情感分析上具有可行性.针对传统循环神经网络模型存在信息记忆丢失、忽略上下文非连续词之间的相关性和梯度弥散的问题,为此本文结合自注意机制和Tree-LSTM模型,并且在Tree-LSTM模型的输出端引入了Maxout神经元,基于以上两种改进基础上构建了SAtt-TLSTM-M模型.实验使用COAE2014评测数据集进行情感分析,实验结果表明:本文提出的模型相比于传统的SVM、MNB和LSTM模型准确率分别提高了16.18%、15.34和12.05%,其中引入了Maxout神经元的RMNN模型相对于LSTM模型准确率提高了4.10%,引入自注意力机制之后的Self-Attention+Tree-LSTM模型相比于Tree-LSTM模型准确率提高了1.85%,并在召回率和F值两项指标上均优于其他对比模型.由此证明,本文提出的SAtt-TLSTM-M模型可用于提高情感分析的准确率,具有一定的研究价值. Sentiment analysis is valued with the development of artificial intelligence.Micro-blog sentiment analysis aims to study the emotional tendency of users to social hot events.Research shows that deep learning is feasible in sentiment analysis.In view of traditional cyclic neural network model,micro-blog sentiment analysis has information memory loss,ignores the correlation between context non-continuous words and gradient dispersion.Therefore,this paper combines the self-attention mechanism and the Tree-LSTM model,and introduces Maxout neuron at the output of the Tree-LSTM model.Based on the two improvemwnts,it constructed a Chinses microblog sentiment analysis model(SAtt-TLSTM-M).The experiment uses the COAE2014 evaluation data set for sentiment analysis.The experimental results show that the accuracy of the proposed model is improved by 16.18%,15.34%and 12.05%compared to the traditional SVM,MNB and LSTM models.The RMNN with Maxout neurons is improved by 4.10%compared with LSTM model.Self-Attention+Tree-LSTM model with the self-attention mechanism is improved by 1.85%compared with Tree-LSTM model.It is also superior to other contrast models in the recall rate and F value.Thus,It proves that the SAtt-TLSTM-M model in this paper can be used to improve the accuracy of sentiment analysis,which shows certain research value in research.
作者 石磊 张鑫倩 陶永才 卫琳 SHI Lei;ZHANG Xin-qian;TAO Yong-cai;WEI Lin(School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China;School of Software,Zhengzhou University,Zhengzhou 450002,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第7期1486-1490,共5页 Journal of Chinese Computer Systems
基金 河南省高等学校重点科研项目(16A520027)资助
关键词 微博情感分析 自注意力机制 Tree-LSTM模型 Maxout神经元 micro-blog sentiment analysis self-attention mechanism Tree-LSTM model Maxout neura
作者简介 石磊,男,1967年生,博士,教授,CCF会员,研究方向为高性能计算、Web数据挖掘;张鑫倩,女,1994年生,硕士研究生,研究方向为情绪分析、情感计算;陶永才,男,1975年生,博士,讲师,CCF会员,研究方向为网格计算、高性能计算,E-mail:ieyctao@zzu.edu.cn;卫琳,女,1968年生,硕士,副教授,CCF会员,研究方向为Web数据挖掘.
  • 相关文献

参考文献4

二级参考文献69

  • 1HATZIVASSILOGLOU V, MCKEOWN K. Predicting the semantic orientation of adjectives[C) II Proceedings of Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Asso-ciation for Computational Linguistics, 1997: 174 - 18l.
  • 2WIEBE J, BRUCE R, MATIHEW B, et at. A corpus study of eval-uative and speculative language[C) II Proceedings of the Second SIGdial Workshop on Discourse and Dialogue. Stroudsburg, P A: Association for Computational Linguistics, 2001: 186 -195.
  • 3HATZIV ASSILOGLOU V, WIEBE J. Effects of adjective orientation and gradability on sentence subjectivity[C) II Proceedings of the 18th Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2000: 299 - 305.
  • 4WIEBE 1. Learning subjective adjectives from corpora[C) II Pro-ceedings of National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2000: 735 - 74l.
  • 5WIEBE J, WILSON T, BELL M. Identifying collocations for recog-nizing opinions[EB/OL).[2012- 06- 20). http://wenku.baidu. comlview/24e5e11cb7360b4c2e3ffi416. htm!.
  • 6WIEBE J, RILOFF E. Creating subjective and objective sentence classifiers from unannotated texts[C) II Proceedings of the 6th Inter-national Conference on Computational Linguistics and Intelligent Text Processing. Berlin: Springer-Verlag, 2005: 486 - 497 .
  • 7WIEBE J, WILSON T, CARDIE C. Annotating expressions of opin-ions and emotions in language] J). Language Resources and Evalua-tion, 2005, 39(2/3): 164 -210.
  • 8PANG B, ULUAN L, SHIVAKUMAR V. Thumbs up: sentiment classification using machine learning techniques[C) II Proceedings of the ACL'()2 Conference on Empirical Methods in Natural Lan-guage Processing. Stroudsburg, PA: Association for Computational Linguistics, 2002: 79 - 86.
  • 9RILOFF E, WIEBE J. Learning extraction patterns for subjective expressions[C) II Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Associ-ation for Computational Linguistics, 2003: 105 -112.
  • 10TURNEY P, UTIMAN M 1. Measuring praise and criticism: In-ference of semantic orientation from association[J). ACM Transac-tions on Information Systems, 2003, 21(4): 315 - 346.

共引文献233

同被引文献140

引证文献22

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部