期刊文献+

自注意力机制支持下的混合推荐算法 被引量:8

Hybrid Recommendation Algorithm Supported by Self-attention Mechanism
在线阅读 下载PDF
导出
摘要 协同过滤是推荐系统中最常用的一种方法,但推荐系统中评分矩阵的稀疏性、冷启动性和大多数推荐算法往往只从用户的角度出发忽略了商品间的关系等因素,限制了推荐算法的实际效果.论文提出一种基于自注意力机制(Self-Attention)的深度学习模型--AS-SADDL,用以进行建模用户交互数据及学习用户潜在偏好表示.该模型采用多重自注意力机制从用户的交互数据中挖掘数据间的关联关系,并通过深层神经网络学习用户潜在偏爱表示.同时用主成分分析法(PCA)对项目评分数据进行降维,并计算项目评分数据间的相似性,结合用户潜在偏爱表示与项目特征表示间的相似性作为最终结果,对用户进行项目推荐.在真实数据集上的实验表明,AS-SADDL模型具有较好的计算效果. Collaborative filtering is one of the most commonly used methods in recommender systems,however,the sparsity of the rating matrix,cold start-up and most recommendation algorithms only considering the users while neglecting the relationship between the items limit the effectiveness of the recommendation algorithms.In this work,based on the multiple self-attention mechanism,a deep learning model,named AS-SADDL,is proposed for modeling user interaction data and learning the user’s latent preference expression.AS-SADDL employs the multiple self-attention mechanism to extract the correlation among the user’s interact items.Moreover,the model learns the user’s latent preferences through the deep neural network.Simultaneously,we use the Principal Component Analysis(PCA)to model the item rating data.As the result,the model recommends the items to the user according to the similarities between user’s preferences and items.Experiments conducted on the public data demonstrate the effectiveness of the proposed model.
作者 苑威威 彭敦陆 吴少洪 陈章 刘丛 YUAN Wei-wei;PENG Dun-lu;WU Shao-hong;CHEN Zhang;LIU Cong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第7期1437-1441,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61772342,61703278)资助
关键词 推荐系统 PCA 自注意力机制 偏好表示 recommender system PCA self-attention mechanism preferences expressing
作者简介 苑威威,男,1991年生,硕士研究生,研究方向为自然语言处理、推荐系统;彭敦陆,男,1974年生,博士,教授,CCF会员,研究方向为大数据管理、Web数据管理、自然语言处理、深度学习,E-mail:pengdl@usst.edu.cn;吴少洪,男,1991年生,硕士研究生,研究方向为自然语言处理、深度学习;陈章,男,1978年生,硕士,讲师,研究方向为自然语言处理、图像处理、知识图谱;刘丛,男,1983年生,博士,讲师,研究方向为智能算法、文本挖掘、图像分析.
  • 相关文献

参考文献2

二级参考文献21

  • 1Lv L Y, Medo M, Yeung C H, et al. Recommender systems[J]. Physics Reports, 2012,519 (1) .. 1 - 49.
  • 2Pdcci F,Nguyen Q N. Acquiring and revising preferences in a critique-based mobile recommender system[J]. IEEE, Intelligent Systems, 2007,22 (3) : 22 - 29.
  • 3Zhang Y C, Blattner M, Yu Y K. Heat conduction process on community networks as a recommendation model [J]. Physical Review Letters, 2007,99(15) : 154301.
  • 4Guo Q, Leng R, Shi K, et al. Heat conduction information filtering via local information of bipartite networks[J]. Tile European Physical Journal B, 2012, 85(8) :1 - 8.
  • 5LiuJ G, Zhou T, Guo Q. Information filtering via biased heat conduction[J]. Physical Review E, 2011, 84(3) ~037101.
  • 6Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007,76(4) : 046115.
  • 7Liu J G, Zhou T, Wang B H, et al. Effects of user's tastes on personalized recommendation [ J ]. International Journal of Modern Physics C, 2009, 20 (12) .. 1925 - 1932.
  • 8Zhou T,Kuscsik Z,Liu J G,et al. Solving the apparent diversity-accuracy dilemma of recommender systems [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (10): 4511 - 4515.
  • 9Zeng A, Yeung C H, Shang M S,et al. The reinforcing influence of recommendations on global diversification [J]. Europhysics Letters, 2012,97 (1) : 18005.
  • 10Liu J, Deng G S. Link prediction in a user-objectnetwork based on time-weighted resource allocation [J]. Physica A: Statistical Mechanics and its Applications, 2009,388(17) .. 3643 - 3650.

共引文献37

同被引文献70

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部