期刊文献+

不确定近邻的协同过滤推荐算法 被引量:217

Uncertain Neighbors' Collaborative Filtering Recommendation Algorithm
在线阅读 下载PDF
导出
摘要 文中围绕传统的协同过滤推荐算法存在的局限性展开研究,提出一种不确定近邻的协同过滤推荐算法UNCF.根据推荐系统应用的实际情况,对于推荐的每一种场景其实都是不可预先确定的,而文中算法基于用户以及产品的相似性计算,自适应地选择预测目标的近邻对象作为推荐群,同时计算推荐群中推荐把握概率较高的信任子群,最后通过不确定近邻的动态度量方法,来对预测结果进行平衡的推荐.通过实验结果表明,该算法可以有效平衡用户群以及产品群推荐结果所带来的不稳定影响,有效缓解用户评分数据稀疏的情况所带来的问题,并在多个实验数据中,提高了推荐系统的预测准确率. To overcome several limitations in the research area of collaborative filtering(CF),this paper presents a CF recommendation algorithm,named UNCF(Uncertain Neighbors' Collaborative Filtering Recommendation Algorithm).In the reality,the scene of recommendation is uncertain.The similarities computations of both user-based and item-based are considered to choose the neighbors dynamically as the recommendation set.This set can be used to select the trustworthy subset which is the most effective objects to the predicted result.Moreover,this paper defines a new prediction algorithm that combines the advantages of trustworthy subset for this uncertain recommendation method.Through experimental results,the UNCF algorithm can consistently achieve better prediction accuracy than traditional CF algorithms,and effectively leverage the result in the uncertain environment.Furthermore,the algorithm can alleviate the dataset sparsity problem.
出处 《计算机学报》 EI CSCD 北大核心 2010年第8期1369-1377,共9页 Chinese Journal of Computers
基金 国家自然科学基金(60773198 60703111) 广东省自然科学基金(7300272 8151027501000021) 国家科技计划项目(2008ZX10005-013) 广东省科技计划项目(2008B050100040 2009A080207005 2009B090300450) 新世纪优秀人才支持计划(NCET-06-0727)资助~~
关键词 不确定近邻 协同过滤 推荐系统 相似性度量 信任子群 uncertain neighbors collaborative filtering recommendation system similarity criterion trustworthy subset
作者简介 黄创光,男,1978年生,博士研究生,研究方向为数据挖掘在客户行为分析和推荐系统上的应用.Email:13316096336@189.cn. 印鉴,男,1968年生,博士,教授,博士生导师,主要研究领域为机器学习和数据挖掘. 汪静,女,1980年生,博士研究生,研究方向为个性化推荐. 刘玉葆,男,1975年生,博士,副教授,主要研究方向为数据库、数据仓库和数据挖掘. 王甲海,男,1977年生,博士,副教授,研究方向为人工智能和数据挖掘.
  • 相关文献

参考文献20

  • 1Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 2Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 3Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 4Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 5Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 6Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 7Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 8Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 9Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.
  • 10Yang J-M,Li K-F.An inference-based collaborative filtering approach//Proceedings of the 3rd IEEE International Symposium on Dependable,Autonomic and Secure Computing (DASC).Columbia,MD,United States,2007:84-94.

二级参考文献1

共引文献58

同被引文献1462

引证文献217

二级引证文献1305

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部