期刊文献+

基于机器视觉的瓶装白酒杂质检测 被引量:8

Bottled liquor impurities detecting based on machine-vision
在线阅读 下载PDF
导出
摘要 介绍了一种基于机器视觉的瓶装白酒杂质检测方法.为了从复杂的视觉图像中提取出微小目标,设计了一种倒置翻转式的检测方式,通过高清数字摄像机获取瓶装酒液的视频序列,采用一种改进的二次差分方法,获取瓶装酒液内可能存在的运动目标.根据气泡和可见异物的形态特征进行分类,判断出酒液中是否含有杂质.实验验证了所提方法的有效性. A method for detecting bottled liquor impurities based on machine vision was introduced. In order to extract small detection targets from a complex image, an inverted flipping detection method was designed. A high-resolution digital video camera was used to acquire the video sequence of the bottled liquor. After that, an improved second-difference method was utilized to detect possible tiny moving targets in the liquid. Morphological characteristics of the bubbles and visible impurities were used to estimate whether the liquor contains impurities. The experiments demonstrate the effectiveness of the proposed method.
作者 邵志敏 张意 张卫华 周激流 SHAO Zhi-Min;ZHANG Yi;ZHANG Wei-Hua;ZHOU Ji-Liu(College of Computer Science, Sichuan University, Chengdu 610065, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期235-240,共6页 Journal of Sichuan University(Natural Science Edition)
基金 川大-泸州战略合作资金项目(2015CDLZ-G22) 国家自然科学基金(61671312) 四川省科技计划项目(2018HH0070)
关键词 机器视觉 运动目标 倒置翻转 杂质检测 Machine vision Moving targets Inverted flipping Impurities detection
作者简介 邵志敏(1993-),男,四川成都人,硕士生,研究方向为计算机视觉.E-mail: 2017223040019@stu.scu.edu.cn;通讯作者:张意.E-mail: yzhang@scu.edu.cn.
  • 相关文献

参考文献9

二级参考文献35

  • 1李秀峰,苏兰海,荣慧芳,陈华.改进均值滤波算法及应用研究[J].微计算机信息,2008,24(1):235-236. 被引量:20
  • 2鲍伟,张崇巍.PCI总线技术在运动控制卡中的应用[J].仪器仪表学报,2005,26(z2):334-336. 被引量:10
  • 3邾继贵,叶声华.基于近景数字摄影的坐标精密测量关键技术研究[J].计量学报,2005,26(3):207-211. 被引量:23
  • 4Zhao Y L, Zhang Z C, Gao Z M. A simple and workable moving objects segmentation method[A]. Proceedings of the International Symposium on Electronics in Marine[C]. Zagreb, Croatia: Croatian Society Electronics in Marine, 2004. 585-590.
  • 5Song H, Shi F. A real-time algorithm for moving objects detection in video images[A]. Proceedings of the World Congress on Intelligent Control and Automation[C]. Piscataway, NJ, USA: IEEE. 2004. 4108-4111.
  • 6Begg R K, Palaniswami M, Owen B. Support vector machines for automated gait classification[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(5): 828-838.
  • 7David A, Lerner B. Support vector machine-based image classification for genetic syndrome diagnosis[J]. Pattern Recognition Letters, 2005, 26(8): 1029- 1038.
  • 8[1]WangZheng,SULan-hai,WUZhang-jiang.Online Glass.Medicine.Bottle.Dimension.DetectionTechnique.Based.on.Image.Manipulation.MECH-ANICALENGINEERING&AUTOMATION.No.2Apr.2006 50-52
  • 9[2]YIN L,YANG R,GABBOUJM,NEUVO Y.Weighted median filters:a tutorial[J].IEEE Trans Circuits Syst,1996,43(3):157-192.
  • 10[3]KOSJ,LEE Y H.Center weighted median filters and their applica-tion to image enhancement[J].IEEE Trans Circuits Syst,1991,38(9):984-993.

共引文献115

同被引文献106

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部