期刊文献+

基于CNN的SAR图像舰船目标检测算法 被引量:3

Ship Targets Detection Method Based on Convolutional Neural Network for SAR Image
在线阅读 下载PDF
导出
摘要 为了提升合成孔径雷达(Synthetic Aperture Radar,SAR)图像舰船目标检测的精度和速度,对卷积神经网络(Convolutional Neural Network,CNN)在SAR图像舰船目标检测上进行了研究。通过改进OTSU方法对SAR图像进行分割,并且用最小外接矩形将疑似目标标记出来;依据矩形中心在原始图像上提取出固定大小区域作为候选区域;将提取的目标通过训练好的卷积神经网络进行判定,去除虚警目标并将检测结果在原图中标记出来。实测数据的实验结果表明,该算法在降低虚警的同时提升了检测速度。 In order to improve the ship targets detection precision and speed for SAR image,the convolution neural network was studied in ship target detection for SAR images. Firstly,segmentation the SAR image by using the improved OTSU method,and mark the suspected target by the minimum bounding rectangle;secondly,according to the rectangular center extract the fixed size region on the original image as a candidate area;finally,determine the extracted target by trained convolution neural network,remove the false target and mark the detection result on the original image. The experimental results by the measured data show,this algorithm improves the detection speed and reduces false alarm at the same time.
作者 曲长文 刘晨 周强 李智 李健伟 QU Chang-wen;LIU Chen;ZHOU Qiang;LI Zhi;LI Jian-wei(Naval Aviation University,Yantai 264001,China)
机构地区 海军航空大学
出处 《火力与指挥控制》 CSCD 北大核心 2019年第1期40-44,共5页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60874112 61571454)
关键词 合成孔径雷达 卷积神经网络 目标检测 图像分割 候选区域提取 synthetic aperture radar convolutional neural network target detection image segmentation candidate area extraction
作者简介 曲长文(1963- ),男,山东济南人,教授,博士生导师。研究方向:信息融合,雷达成像,阵列信号处理,电子对抗。
  • 相关文献

参考文献4

二级参考文献108

  • 1Gan Rongbing,Wang Jianguo.Distribution-based CFAR detectors in SAR images[J].Journal of Systems Engineering and Electronics,2006,17(4):717-721. 被引量:2
  • 2Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 3Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 5Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 6Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 7Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 8Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 9Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 10Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].

共引文献488

同被引文献20

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部