期刊文献+

基于改进SLIC算法的SAR图像海陆分割 被引量:2

A Sea-Land Segmentation of SAR Image Based on Improved SLIC Algorithm
在线阅读 下载PDF
导出
摘要 海陆分割在提高SAR图像舰船目标检测精度方面具有十分重要的意义。针对传统算法不能很好地对SAR图像进行海陆分割,提出了基于改进SLIC超像素分割和分层区域合并准则(HSWO)的海陆分割算法。针对SAR图像统计特性,首先对SLIC超像素分割和HSWO算法模型分别进行改进,然后用SLIC超像素分割算法对图像进行超像素分割,并按照分层区域合并准则对超像素块进行聚类,最终实现海陆分割。实验表明,所提出的改进模型具有较高的处理精度和处理效率,相比于其他算法更适用于SAR图像的海陆分割,具备一定的工程应用价值。 Sea-land segmentation is of great significance for improving the accuracy of SAR target ship detection. Aiming at the fact that the traditional algorithm can not carry out high-quality sea-land segmentation for the SAR image this paper proposes a segmentation algorithm based on the improved SLIC superpixel partitioning and the Hierarchical Area Combination Criterion( HSWO). According to the statistical characteristics of SAR images the SLIC and HSWO algorithm models are improved respectively at first. Then the SLIC algorithm is used to segment the superpixels in the image and the superpixel blocks are clustered according to the merging rules of the hierarchical regions. Finally the segmentation between sea and land is implemented. Experiments show that the improved model proposed here has higher processing precision and efficiency. Compared with other algorithms it is more suitable for the sea-land segmentation of SAR images and has certain engineering application value.
作者 朱鸣 杨百龙 何岷 陈铮铮 张雄美 ZHU Ming;YANG Bai-long;HE Min;CHEN Zheng-zheng;ZHANG Xiong-mei(Rocket Force University of Engineering,Xi'an 710025,China;Beijing Institute of Remote Sensing Technology,Beijing 100039,China)
出处 《电光与控制》 CSCD 北大核心 2019年第1期21-25,30,共6页 Electronics Optics & Control
基金 国家自然科学基金(61640007)
关键词 SAR图像 海陆分割 SLIC超像素分割 分层区域合并准则 SAR image sea-land segmentation SLIC superpixel segmentation hierarchical area combination criterion
作者简介 朱鸣(1994-),男,安微安庆人,硕士生,研究方向为图像处理,SAR图像目标检测。
  • 相关文献

参考文献2

二级参考文献42

  • 1REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 2FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 3SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 4SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.
  • 5MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8.
  • 6LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104.
  • 7VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598.
  • 8COMANICIU D, MEER P. Mean shift: a rnhust approrah toward fea- ture space analysis[ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2002, 24(5): 603-619.
  • 9VEDALDI A, SOATTO S. Quick shift and kernel methods for mode seeking [ M ]//Computer Vision. Berlin: Springer-Verlag, 2008: 705-718.
  • 10LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. Turbotfi- xels: fast superpixels using geometric flows [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2290- 2297.

共引文献117

同被引文献21

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部