期刊文献+

基于粒子群优化的认知无线电功率分配算法 被引量:1

Cognitive Radio Power Allocation Algorithm Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 针对认知无线电网络(CRN)中主用户(PU)的干扰功率阈值、次用户(SU)的传输速率限制和信干噪比(SINR)需求,提出一种基于蒸发因子的粒子群优化(LTPSO)算法,其中蒸发因子根据粒子群学习因子设定,建立新的粒子群记忆形式,并对适应度值按比例进行筛选.仿真结果表明,LTPSO算法获得了较好的优化效果. Aiming at the interference power threshold of the primary user(PU)in the cognitive radio network(CRN),transmission rate limit of the secondary user(SU)and the signal-to-interference-noise-ratio(SINR)requirement,we proposed a learning traditional particle swarm optimization(LTPSO)algorithm,in which the evaporation factor was set according to the particle swarm learning factor,a new particle swarm memory form was established,and the fitness values were screened proportionally.The simulation results show that the LTPSO algorithm achieves better optimization results.
作者 王宏志 姜方达 周明月 WANG Hongzhi;JIANG Fangda;ZHOU Mingyue(School of Computer Science and Engineering,Changchun University o f Technology,Changchun 130012,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1483-1487,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61501059) 吉林省教育厅科研项目(批准号:2016343)
关键词 认知无线电 功率分配 粒子群优化算法 cognitive radio power allocation particle swarm optimization(PSO)algorithm
作者简介 王宏志(1961—),男,汉族,博士,教授,博士生导师,从事数字信号处理与应用及图像处理的研究,E-mail:wanghongzhi@ccut.edu.cn.;通信作者:周明月(1980-),女,汉族,博士,讲师,从事认知无线电系统中资源分配问题的研究,E-mail:zmyjlu@ccut.edu.cn.
  • 相关文献

参考文献6

二级参考文献50

  • 1Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287.
  • 2Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms[J]. Simulation, 1994, 62(4): 242-254.
  • 3Joines J A, Houck C R. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's[A]. Proceedings of the First IEEE Conference on Evolutionary Computation[C]. Piscataway, N J, USA: IEEE, 1994. 579-584
  • 4Ben Hadj-Alouane A, Bean J C. A genetic algorithm for the multiple-choice integer program[J]. Operations Research, 1997, 45(1): 92-101.
  • 5Rasheed K. An adaptive penalty approach for constrained genetic algorithm optimization[A]. Proceedings of the 3rd Annual Genetic Programming Conference[C]. San Francisco, CA, USA: Morgan Kaufmann, 1998. 584-590.
  • 6Runarsson T P, Yao X. Stochastic ranking for constrained evo lutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.
  • 7Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445-455.
  • 8Tessema B, Yen G G. A self adaptive penalty function based algorithm for constrained optimization[A]. Proceedings of the IEEE Congress on Evolutionary Computation[C]. Piscataway, NJ, USA: IEEE, 2006. 246-253.
  • 9Wang Y, Cai Z X, Zhou Y R,et al. An adaptive tradeoff model for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 80-92.
  • 10廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法[J].电子与信息学报,2007,29(7):1608-1611. 被引量:58

共引文献58

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部